
NOTES FOR CIMPA COURSE.
DYNAMICAL SYSTEM

NICOLAS BÉDARIDE

1. What is a dynamical system ?

Three different dynamical systems :

1.1. Differential equation. Let x : R Ñ Rd be a function defined on an interval, let us
denote Btx the derivative up to t. Then a differential equation of first order is

Btx “ fpxptq, tq

where f is a function from an open set Ω of Rˆ Rd to Rd.
An equation of the form Btx “ fpxptqq is called an autonomus .
The map f is called a vector field because p1, fpxptqq is the tangent vector to the trajectory

t ÞÑ xptq.

Example 1.1. Example of Lorentz. Here X “

¨

˝

x
y
z

˛

‚ where x, y, z : R Ñ R with three

positives coefficients σ, r, b
$

’

&

’

%

Btx “ σpy ´ xq

Bty “ rx´ y ´ xz

Btz “ xy ´ bz

A differential equation of degree two is of the form B2t x “ fpx, tq. It can be reduced to a
first order differential equation.

Example 1.2. Newton equation :

Figure 1. Lorentz
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mB2t x “ F pxq

If we denote p “ mBtx, then Btp “ F pxq. Let us consider the function H “ 1
2m
p2 ` V , with

F “ ´gradV . We obtain

#

Btx “
BH
Bp

Btp “ ´
BH
Bx

A function f is locally lipschitz if for every R ą 0, there exists a constant M ą 0 such
that

|fpxq ´ fpyq| ďM |x´ y| |x|, |y| ď R

Proposition 1.3. A continuously differentiable function is locally lipschitz.

Theorem 1.4 (Cauchy Lipschitz). If f is locally lipschitz on the second variable, then there
is an unique function x defined on an interval containing 0 solution of

Btx “ fpt, xq, xp0q “ x0

Theorem 1.5. If f is locally lipschitz, then the solution x is defined on a maximal interval
pT´, T`q. If T´ ‰ ´8, then limT´

|xptq| “ 8. Same thing for T`.

Example 1.6. Consider the Lorentz system with r ă 1. We will prove that the solution
exist for all t ą 0. Indeed let us consider V px, y, zq “ rx2`σy2`σpz´ 2rq2. Then we obtain
BtV “ 2σrbr2´prx2`y2`bpz´rq2qs. Then consider C ą 0 big enough such that the ellipsoid
V ă C contains the ellipsoid rx2 ` y2 ` bpz ´ rq2 ď br2, then solutions cannot escape from
the ellipsoid, thus are bounded and thus exist for all t ą 0.

Remark that it does not exclude the case where solution blow up in time t ă 0.

Now let us introduce the notion of phase space.
Let xpt, x0q the solution of the Cauchy problem defined on interval pT´px0q, T`px0qq. Consi-

der for t P R the set Ut “ tx0 | T´ ă t ă T`px0qu and the map Φt : Ut Ñ Rd such that
Φtpx0q “ xpt, x0q. This map sends the initial data to the solution at time t.

We have Φt ˝ Φs “ Φt`s

Example 1.7. Consider the motion of a pendulum of length l in the space with acceleration
g : If we denote θ the angle of the pendulum with the vertical we have

B
2
t,tθ `

g

l
sin θ “ 0

Consider v “ Btθ, then we obtain
#

Btθ “ v

Btv “ ´
g
l

sin θ

The phase space is Tˆ R.

Let fpq : Ω Ñ Rd be a vector field and let x0 P Ω.
Consider Σ an open set of an affine hyperplane P , which contains x0 and such that Rd “

P ‘Rfpx0q. We say that Σ is transverse to the orbit of x0 under the flow. Then the time of
first return of x0 is given by Φτ0px0q where

τ0 “ mintt ą 0 | Φtpx0q P Σu,

Theorem 1.8. If τpx0q exists, then
2



Figure 2. Phase space for the pendulum

— There exists W open neighborhood of x0 in Σ and a map τ : W Ñ R such that for all
u P W , τpuq is the first return time of u to Σ.

— the map u ÞÑ T puq “ Φτpuqpuq is a diffeomorphism from W to its image.

This theorem shows that the study of a differentia equation can be resumed to the study
of some diffeomorphism T .

1.2. Discrete dynamical system. A discrete dynamical system is a map f : X Ñ X, and
with a P X we study the sequences xn`1 “ fpxnq, x0 “ a.

Remark the similitude with a differential equation : We replace x1 by xn`1 ´ xn.
The following equation is easy to solve

Btx “ µxp1´ xq

Consider the dynamics of population :
xn`1 “ µxnp1´ xnq

Hard to understand :
— If 0 ď µ ď 1, then limxn “ 0
— If 1 ď µ ď 3, then limxn “

µ´1
µ
. Two cases among if µ ď 2 or not.

— If 4 ą µ ą 3, a lot of adherence points. . .
— If µ ą 4, then r0, 1s is not stable.
Another example is given by the following result : consider the Charkovski order (1964)

1 ă 3 ă 5 ă ¨ ¨ ¨ ă 2n`1 ă ¨ ¨ ¨ ă 2˚3 ă 2˚5 ă ¨ ¨ ¨ ă 2n ˚3 ă 2n ˚5 ă . . . 2n ă 2n´1 ă ¨ ¨ ¨ ă 1

Theorem 1.9. Let f a continuous map from r0, 1s to r0, 1s. Consider the discrete dynamical
system pr0, 1s, fq. If a point has period p then it has period q for all q ą p for the previous
order.

1.3. Group action. Let X be a compact space and G be a group which acts on X.
pg, xq ÞÑ g.x

with the properties h.pg.xq “ phgq.x, e.x “ x.
We can look at the orbit of x : this is the set of g.x with g P G. One example is a Z action

if we have a space X and an invertible map T : The action of Z is defined by n.x “ T nx.
3



Figure 3. Bifurcation diagramm

If we want to look at a Z2 action, then we need two maps T, F which commute.
pn,mq.x “ T n ˝ Fmx

We can thing of it as a tiling of Z2 and the action of the group of translations Z2.
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2. Ergodic theory

2.1. Measured systems. A measurable dynamical system is pX,T, µq where X is a
compact set, T : X Ñ X, and µ a probability measure on X such that µpAq “ µpT´1Aq for
all measurable set A Ă X. We say that the measure µ is invariant with respect to pX,T q.

Example 2.1. xÑ x`a on T with Lebesgue measure. xÑ 2x on T with Lebesgue measure.
xÑ ϕx on T, see exercice for the invariant measure.

The system pX,T, µq is ergodic if T´1A “ A implies µpAq “ 0 or µpAq “ 1. If there
exists only one ergodic measure, then pX,T q is said to be uniquely ergodic.

Proposition 2.2. Consider f : X Ñ R. The system is ergodic if f ˝ T “ f implies that f
is constant almost everywhere.

Proposition 2.3. The set of invariant probability measures is a convex compact set. The
ergodic measures are the extremal points of this set.

Theorem 2.4 (Birkhoff).
— Let B be a measurable set, then the sequence 1

n

řn´1
i“0 χBpT

ixq converges almost everyw-
here.

— If f : X Ñ R is in L1pX,µq then the sequence 1
n

řn´1
i“0 fpT

ixq converges almost eve-
rywhere to an invariant function f .

Corollary 2.5. The system is ergodic if and only if for every f P L1pX,µq the sequence
converges to

ş

X
fdµ almost everywhere.

Consider the Koopman operator

L2pX,µq Ñ L2pX,µq
f ÞÑ UT pfq “ f ˝ T

Proposition 2.6. Let P be the orthogonal projection on the space of invariant vectors of
UT . Then for every f in L2pX,µq we have

lim
1

n

n
ÿ

i“0

U i
Tf “ P pfq

Proposition 2.7. The system is ergodic if and only if 1 is the only eigenvalue of UT in
L2pX,µq.

2.2. Orbits. The orbit of x P X is the sequence Opxq “ pT nxqnPN.

Lemma 2.8 (Poincaré). Let pX,T, µq be a dynamical system, and A Ă X such that µpAq ą
0. Then there exists n ą 0 such that µpAX T´nAq ą 0.

Corollary 2.9. Almost every point of A comes back to A infinitely often.

The system is minimal if every orbit is dense in X. The system is transitive if one orbit
is dense. One point is periodic if there exists p P N such that T px “ x.
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2.3. Spectral theory. A function f P L2pX,µq is an eigenfunction if there exists a complex
number λ such that Uf “ λf . The set of eigenvalues form a countable subgroup of S1. Now
consider V “ ă eigenfunctions ą, this is the spectrum.

— If V “ L2, then we speak of discrete spectrum.
— If V “ tConstu we speak of continuous spectrum.
— If not, then we speak of mixed spectrum.
A system pX,T, µq is mixing if it has non constant eigenfunctions. A system is weak

mixing if every eigenfunction is constant almost everywhere.

Theorem 2.10. A map is mixing if for all A,B Ă X measurable sets, we have

lim
nÑ`8

µpT´nAXBq “ µpAqµpBq.

A map is weak mixing if for all A,B Ă X measurable sets, we have

lim
nÑ`8

1

n

n
ÿ

i“0

|µpT´iAXBq ´ µpAqµpBq| “ 0.

Proposition 2.11. A mixing map is weak mixing, and a weak mixing map is ergodic.

Theorem 2.12. A map is weakly mixing if and only if T ˚ T is ergodic for the product
measure.

2.4. Coding. A measured topological dynamical system is a triple pX,T, µq such that X
is a compact topological space, µ is a finite measure defined on the Borel sets of X, and
T : X Ñ X is a µ-almost everywhere continuous map such that µpT´1pBqq “ µpBq for any
Borel set B of X.

To a measurable partition pPiqiPI of X, we associate its coding cod : X Ñ IN defined by
codpyq “ pinqnPN and @n P N, T ny P Pin . The map cod is a symbolic coding of the system
pX,T q and the closure of codpXq defines a subshift over the alphabet I. A generating partition
of the map T is a partition whose coding is injective almost everywhere.

Definition 2.13. A generating partition pPiqiPI of X is regular if every set P i is the closure
of its interior and if the boundary of each Pi is of zero measure.

2.5. Examples. We finish by four examples of different types which will be studied in all
the following.

— A subshift defined by
X Ñ X
x ÞÑ Sx

where X Ă AN.
— Rotations on the torus Td.

Td Ñ Td
x ÞÑ x` a

— Matrix action on Td, with A P SLdpZq

Td Ñ Td
x ÞÑ Ax
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— A non compact example with link with Julia and Mandelbrot sets
C Ñ C
z ÞÑ z2 ` c

7



3. Subshifts

3.1. Definitions. Let A be a finite set of cardinality d, and AN the set of infinite sequences.
This set has the natural product topology, and is compact. This topology is metrizable with
dpu, vq “ 2´n, where n “ inftk P N|uk ‰ vku. Then we consider the shift map S on this set.

SppunqnPNq “ pun`1qnPN

A subshift is pX,Sq where X is a subset of AN which is closed and S-invariant. A special
case of subshift is the orbit of a point u :

Xu “ tSnu, n P Nu

Consider again a subshift X defined over the alphabet A. Consider x P X. A word of
x of length k is a finite sequence xn . . . xn`k´1. The set of words of length n which appear
in some x P X is called the language of the words of length n of X. It is denoted LnpXq,
and the union of these sets is LpXq the language of the dynamical system. The language is
factoriel : If uv belongs to it, then also do u and v. Let v P LpXq, then the cylinder defined
by v is the set of elements of X which begin by v.

if X “ AN, then it is called full shift.

3.2. Properties.

Lemma 3.1. With these notations
— The space pAN, dq is compact and complete.
— It is a Cantor space : no isolated point, totally disconnected and compact.
— The cylinder sets form a basis of the topology.
— The shift map is uniformely continuous on this space.

Proposition 3.2. The following points are equivalent
— The infinite word v is in Xu.
— For every integer n we have Lnpvq Ă Lnpuq.
— There exists an increasing sequence pknqnPN such that v0 . . . vn “ ukn . . . ukn`n.

Proposition 3.3. We have equivalence between the points :
— A subshift X is transitive
— For every open sets U, V Ă X there exists x P X and n P Z such that x P U and

Snpxq P V . We can also write it as

Dn P Z, S´nV X U ‰ H.

— For every finite words u, v of the language, there exists x P X such that u, v belong to
the language of x.

Remark that the integer can be non positive.

Proposition 3.4.
— A subshift X is minimal if and only if it does not contain a non empty subshift strictly

included in X.
— The subshift is minimal if and only if for all x, y P X the languages of x and y are

equal.
— Every subshift contains a minimal subshift.

8



An infinite word is ultimately periodic if there exists an integer k such that xkxk`1 . . .
is a periodic word.

Proposition 3.5. The following points are equivalent.
— The element x is ultimately periodic.
— Opxq is closed.
— Opxq is finite.

3.3. Recurrence. We give some important definitions about recurrence
— A sequence x is said to be recurrent if every word u of the language Lx appears

infinitely many often.
— The sequence is said to be uniformely recurrent if for every n there exists N such

that for every word u P Lnpxq the size of the return word beteween two occurences of
u is bounded by N .

— The infinite word x is said to be linearly recurrent if it is uniformely recurrent and
there exists k ě 1 such that N ď kn with previous notations.

— The subshift X is ?z♠ if there exists x P X with property ?z♠ and such that Xx “ X.

Proposition 3.6. We have implications 1 Ñ 2 Ñ 3 Ñ 4

(1) x is periodic,
(2) x is linearly recurrent,
(3) x is uniformely recurrent,
(4) x is recurrent.

Remark 3.7. No implication in other directions, see following examples :
— An sturmian subshift is quasi-periodic and non periodic.
— A sturmian subshift is LR if and only if its angle is with bounded partial quotient.
— There exists some substitution with a subshift uniformely recurrent and not LR.

Theorem 3.8 (Gottschalk). The subshift Xx is minimal if and only if x is uniformely
recurrent.

3.4. Complexity function. The complexity function of the language is the function

N˚ Ñ N
n Ñ ppnq “ cardLnpXq

Proposition 3.9. If x is an ultimately periodic word, then ppnq is a bounded sequence.
If there exists some integer n such that ppnq ď n, then the sequence is ultimately periodic.

Lemma 3.10. For every zlanguage and every integers n,m we have

ppn`mq ď ppnqppmq.

Consider a language and the set Ln of words of length n of this language. A word of Ln
is said to be right special if it admits several right expansions in a word of Ln`1. By the
same way we define a left special word. A word is bispecial if it is right and left special.
We denote spnq “ ppn` 1q ´ ppnq for every integer n.

An infinite word is a sturmian word if the complexity of this word equals n`1 for every
integer n. A substitution is a sturmian substitution if the image of every sturmian word
is a sturmian word.
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Example 3.11. We will see that the fixed point of the Fibonacci substitution is a sturmian
word.

Thus we can define the next notion. The topological entropy of the subshift is defined
as

hpXq “ lim
`8

log ppnq

n
where p is the complexity function of the language.
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4. Shifts of finite type

Here we consider sequences over Z.

4.1. Definitions. Let F be a finite set of words over A. A subshift of finite type is the
set of infinite words x P AZ such that no word of Lpxq belongs to F . The set F is called the
set of forbidden words.

Example 4.1. Consider F “ t00, 01, 10u for the alphabet t0, 1u.

Proposition 4.2. The question to know if AZ is a SFT is decidable.

Consider a finite graph, where edges are labelled by a finite set A. It is called an ω-
automata. We can associate a subshift such that the sequence penqnPN belongs to the subshift
if for every integer n we have tpenq “ ipen`1q where tpeq is the terminal vertex of the edge,
and ipeq is the initial one. We call this subshift a sofic subshift defined by the ω-automata.

Example 4.3. Example of sofic shift.

0

0
1

It is called even shift.

Proposition 4.4. Every SFT is obtained from a ω-automata.

Proposition 4.5. If for every x, the sequence of edges defines an unique sequence of vertices,
then the sofic subshift is a SFT.

Remark is not the case of the even shift.

Proposition 4.6. For every sofic subshift, there exists a SFT which projects onto it.

Example 4.7. For the even shift we find F “ tab, bb, ca, ccu, and XF is a SFT on a 3 letters
alphabet ta, b, cu. Moreover we project b, c on 0 and a onto 1.

Thus a sofic subshift is a factor of a SFT.

Proposition 4.8. Consider F a finite set of words and XF Ă AZ the SFT associated.
Assume that XF ‰ H then it contains one periodic word.

4.2. SFT and graph map. Consider an oriented graph. Let A PMNpNq be a matrix which
will be the adjacy matrix of the graph. The coefficient Ai,j is 1 if there is an edge from vertex
i to vertex j.

To a SFT we can associate a sequence pGnqnPN of graphs, given by pVn, Enq where :
— Vn is the set of words of length n in the language.
— En represents the words of length n` 1,
— The edge between vertices U, V exists if one can find a, b such that Ua “ bV . In this

case we label it by Ua.

Lemma 4.9. The study of the SFT is the same as the study of Gn where n ` 1 is the
maximum size of the forbidden words.

Démonstration. zVérifier. z �
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Remark 4.10. To a sofic subshift we can associate the same graph. But in this case several
edges can have the same label.

Example 4.11. Consider F “ t11u we obtain the following graphs and the matrix
ˆ

1 1
1 0

˙

.

We are not obliged to label the edges.

0 1
01

1000

00 01

10

001

100

010101100

000

Remark that the matrix is irreducible if and only if the graph is strongly connected.
Now we define the notion of sliding block code. Consider two integersm,n and a function

Φ defined on an interval centered on i and translated of r´m,ns by
Φpxi´m . . . xi`nq “ yi

Example 4.12. The following map allows us to pass from the golden mean shift to the even
shift

#

Φp00q “ 1,

0 “ Φp01q “ Φp10q

Remark the following fact, at the base of the theory of cellular automata

Proposition 4.13. A sliding block code commutes with the shift maps and is continuous.

4.3. Classical examples.

Example 4.14. We consider three examples given by the set of forbidden words over a two
letter alphabet :

— F “ t11u : Golden mean shift
— Range of 0 of odd length : Even Shift
— Range of 0 of the same length : Not a SFT, not a sofic susbhift.

Proposition 4.15. The even shift is not an SFT.

4.4. Dynamics. Recall that the topological entropy of a SFT is given by

hpXq “ lim
n

ln ppnq

n

where nÑ ppnq is the complexity function of the subshift.

Example 4.16. Consider the SFT given by F “ t11u. The topological entropy is lnϕ.

Theorem 4.17. The topological entropy of a SFT is equal to lnλ where λ is the spectral
radius of the matrix.

Proposition 4.18. Let bpnq be the number of periodic words of period exactly d in a subshift.
For SFT we have

ř

d|n bpdq “ trpAnq for every integer n.
12



Proposition 4.19. For the complexity function we have

ppnq “
ÿ

i,j

Mn´m
i,j

where m is the length of the maximal forbidden word.

Example for the golden mean shift : M “

¨

˝

1 0 1
1 0 1
0 1 0

˛

‚. Remark that for prime number we

have bppq “ trpMpq ´ trpMq.

Remark 4.20. Remark that ln bpnq
n

does not converge, even for a SFT.

A subshift is topologically weak mixing if for every words u, v of LX , there exists N
such that for every integer n ě N there exists a word w of length n such that uwv is in the
language LX .

Proposition 4.21. A SFT is topologically weak mixing if and only if its matrix is primitive.
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5. Entropy

5.1. Metric entropy. Consider µ an ergodic measure of pX,T q. Then for almost every x
the following limit exists and is constant

lim
´1

n
log µprx0 . . . xn´1sq

It is the metric entropy of the measure µ. We denote it hµpX,T q.
Consider an invariant measure µ : By definition, it is the convex hull of a finite znumber

of ergodic measures : µ “
ř

aiµi. Then we define its metric entropy as

hµ “
ÿ

aihµi

Theorem 5.1. Consider a compact dynamical system

htoppXq “ sup
µ
hµpXq

5.1.1. Parry measure for a SFT.

Definition 5.2. The Parry measure is an ergodic measure µ which maximizes the topo-
logical entropy of the SFT.

hµ “ htop

Proposition 5.3. If the SFT is topologically transitive, then the Parry measure is unique.
Moreover we can compute it by the following formula. Let us denote

pi “ liri, pi,j “Mi,j
rj
λri

where r, l are right and left eigenvectors of the incidence matrix for the Perron Frobenius
eigenvalue λ. The measure of a cylinder rvs defined by the word v “ v0 . . . vn is given by

µprvsq “ pv0

n´1
ź

i“0

pvivi`1

For example we obtain the following examples

µprabsq “ papa,b, µprabcsq “ papabpbc.

5.2. Formal definition of the metric entropy. Consider a partition Q of X, then we
define T´1Q as the union of T´1Qi, i “ 1 . . . k. For two partitions P,Q we define P _ Q as
the refinement of the two partitions

tQi XRj, µpQi XRjq ą 0u

Then we consider
N
ł

i“0

T´iQ.

The entropy of the partition is defined as HpQq “ ´
ř

µpQiq log µpQiq.
The measure entropy of the system with respect to Q is then defined as

hpT,Qq “ lim
`8

1

N
Hp

N
ł

i“0

T´iQq

14



Then the metric entropy is
hµpT q “ sup

Q
hpT,Qq.

Theorem 5.4 (Sinai). In the previous formula the supremum is obtained for partitions which
are generators.

Recall that a partition is generator if µ almost every point has an unique symbolic name.
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6. Substitutions

6.1. Definitions. Consider a finite set A, then denote A˚ the set of finite words defined
over A. A substitution is a morphism σ of this monoid onto itself.

σpuvq “ σpuqσpvq

Fix a basis pe1 . . . edq of Rd. There exists a map π from A˚ into Zd where d is the cardinality
of A given by :

πpw0 . . . wnq “
n
ÿ

k“0

ewk
.

This allows to define a linear morphism of Zd which commutes with π, σ : The morphism
of Zd can be defined by a matrix Mσ, called the incidence matrix of the substitution.

The substitution is said to be :
— primitive if there exists an integer k such that Mk

σ ą 0.
— irreducible if the characteristic polynomial of Mσ is irreducible over Z.
— unimodular if detpMσq “ ˘1.
— Pisot if the dominant eigenvalue is a Pisot number.
We recall that a Pisot number is an algebraic number such that all its algebraic conjugate

are in the unit disc.
The substitution acts on A˚ and it can be extended to an action on AN.
A fixed point of σ is an element of AN such that σpuq “ u. A periodic point is an

element such that σkpuq “ u for some k ą 0.
The language of a substitution is the set of finite words which appear as a subword of

some σnpaq where a P A. The subshift associated to a substitution is the set of sequences
such that every subword appears in the language of σ. It is denoted Xσ.

A susbtitution is said to be aperiodic if the subshift is not made of periodic words.

6.1.1. Automaton. An automaton is a 5-uplet pQ,Σ, δ, q0, F q where
— Q is a finite set of states.
— Σ is a finite set of symbols, called the alphabet.
— δ is a function Qˆ Σ Ñ Q, called the transition function.
— q0 P Q is the start state.
— F is the set of states, called the accept states.
An automaton reads a finite word w “ a1 . . . an with ai P Σ and a run of the automaton is

a sequence of states q0 . . . qn such that qi “ δpqi´1, aiq for 0 ă i ď n. The word w is accepted
if qn belongs to F .

Let k be an integer greatest or equal than one. One special class is given by the k-
automaton. It is a directed graph defined by

— A finite set of vertices called S, and one initial vertex called i.
— k oriented edges from S to S denoted 0 . . . k ´ 1.
— A set Y and a map φ from S to Y called the output function.
A sequence punqnPN is called k-automatic if we write n “

řj
i“0 nik

i and starting from the
initial state we follow a path in the oriented graph defined by n0, . . . nj. At this point we are
at vertex apnq and we have un “ φpapnqq.

Proposition 6.1. The following automaton is linked to the Thue-Morse subshift. The initial
state is a and the output is given by Idta,bu.
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a b

0

1

1

0

Proposition 6.2. The term un of the fixed point is equal to the sum of the digits mod 2 of
the expansion of n in base 2.

For example p18q2 “ 10010, thus u18 “ 0.

Theorem 6.3 (Perron Frobenius). Consider a primitive matrix, then there exists λ ą 0
which is eigenvalue ofM with eigenspace of dimension one, and such that other eigenvalues θ
fulfill |θ| ă λ. Moreover a basis of the eigenspace ofM associated to λ has positive coefficients.

Theorem 6.4 (Mossé). A substitution σ is aperiodic if and only if for every u P Xσ, there
exists a unique integer k and an unique v P Xσ such that Skσpvq “ u.

Automaton of prefixes-suffixes, see [?] and [?].
Consider an aperiodic substitution. Let w P Xσ, then by previous theorem there exists an

unique v P Xσ and an unique k ă |σpv0q| such that w “ Skσpvq. We define a map

θ :
Xσ Ñ Xσ

w ÞÑ v

Then consider
P “ tpp, a, sq P A˚ ˆAˆA|Db, σpbq “ p.a.su

Now define the application γ : Xσ Ñ P which sends w to pp, w0, sq such that σpθpwq0q “
p.w0s. The sequence γpθipwqqiPN is called the development in prefix-suffixes. Then we
define an automaton such that

— The set of states is A.
— The set of edges is P .
— There is an edge from a to b if σpbq “ p.a.s. The edge is labelled by pp, a, sq.

6.2. List of classical examples.

#

0 Ñ 01

1 Ñ 0

#

0 Ñ 01

1 Ñ 10

$

’

&

’

%

0 Ñ 01

1 Ñ 02

2 Ñ 0

#

0 Ñ 0010

1 Ñ 1

Fibonacci Thue´Morse Tribonacci Chacon

6.3.

Lemma 6.5. Assume that for each letter b, we have lim`8 |σ
npbq| “ `8, then there is a

periodic point.

Proposition 6.6. Let σ be a substitution such that : there exists a letter a with σpaq starting
with a.The substitution is everywhere growing. Every letter appears in the fixed point starting
with a. Then σ is primitive if and only if the fixed point beginning with a is minimal.

17



6.4. Dynamics.

Theorem 6.7. The subshift of a primitive substitution is minimal and uniquely ergodic.

Proposition 6.8. The Chacon substitution defines a minimal subshift :
#

0 ÞÑ 0010

1 ÞÑ 1

Proposition 6.9. For a primitive substitution, the frequence of a letter i is given by
Ri

ř

Rj

,

where R is a right eigenvector of Mσ associated to the Perron Frobenius eigenvalue.

6.5. Combinatorics on substitutions.

Theorem 6.10 (Pansiot). For every substitution σ, the subshift Xσ verifies : pXpnq ď Cn2.
If the substitution is primitive, then the complexity function is at most linear.

Corollary 6.11. For every substitution, the topological entropy of Xσ is zero.

Proposition 6.12. The Thue-Morse word, associated to the substitution θ fulfills
— The strong bispecial words are θnpabq, θnpbaq.
— The weak bispecial words are θnpabaq, θnpbabq.
— The neutral bispecial words are a, b.
— The complexity function is sub-linear.
— It is an aperiodic word.

Theorem 6.13 (Brleck). The complexity function of the Thue-Morse word is equal to

ppnq “

#

6.2r´1 ` 4p, 0 ď p ď 2r´1

8.2r ` 2p, p ą 2r´1

where n “ 2r ` p` 1.

Proposition 6.14. Cobham Theorem Consider the set E “ t2n, n P Nu. This set is
2-automatic.

Démonstration. Consider the substitution a ÞÑ ab, b ÞÑ bc, c ÞÑ cc and the map φ given by
a, c ÞÑ 0, b ÞÑ 1. Then let x the fixed point of the substitution which begins by a. We have
1E “ φpxq. �

18



7. Translations

7.1. Definitions. The torus is a topological space quotient of Rn by a lattice of rank n.
It is a compact connected group. In mots of the case we will consider Rn{Zn. We denote an
element by rxs where x P Rn. A translation is a map of the following form with α P Rn.

Tn Ñ Tn
rxs ÞÑ rx` αs

The vector α is totally irrational if we have
a1α1 ` ¨ ¨ ¨ ` anαn “ b, ai P Q, b P Q ùñ a1 “ ¨ ¨ ¨ “ an “ b “ 0

7.2. Dynamical properties.

Proposition 7.1. The Lebesgue measure is invariant by the translation

Démonstration. Left to the reader �

Theorem 7.2. A translation by α is uniquely ergodic if α is totally irrational.

Proof for n “ 1 later.

Proposition 7.3. If α is a rational number then every point has a periodic orbit. If α is an
irrational number then the translation is minimal.

Démonstration. If α “ p
q
, then it is an easy exercice. Indeed T qpxq “ x`p mod 1 “ x. Thus

every point is periodic with a period which divides q.
Now consider the case α irrational number, and let x P T1. All the points xk “ x` tkαu are
distinct points. Let N be a positive integer and consider tkαu (fractional parts), 1 ď k ď
N ` 1. Now we consider the N intervals of length 1{N which make a partition of r0, 1s. By
the pigeon hole principle, 2 points are in the same interval. Let us denote them xn, xm and
assume m ą n. Let us denote b the distance between these 2 points : by definition it is less
than 1{N . Now consider the points xn`ik with i positive integer and k “ m´n. We compute
xn`pi`1qk ´ xn`ik, and we remark that two consecutive points are at distance at most b. We
deduce that every point of the circle is at distance at most b of one of them. We let N go to
infinity, and we deduce that the orbit of x is dense. �

Remark the result is different in higher dimension.

Example 7.4. Consider the two following translations

T2 Ñ T2
ˆ

x
y

˙

ÞÑ

ˆ

x` 2
3

y `
?

2

˙

T2 Ñ T2
ˆ

x
y

˙

ÞÑ

ˆ

x`
?

2
y `

?
2

˙

No one is a minimal system.

Proposition 7.5. On T1, a translation of irrational vector is ergodic for the Lebesgue mea-
sure.

Démonstration. We use a criteria with invariant function. Assume there exists a map f P
L2pX,µq such that f ˝ T “ f . We use Fourier decomposition of f : f “

ř

ane
inx,and we

obtain ane
inα “ an. Since α is an irrational number we deduce, an “ 0 for every non zero

integer n. Thus the map f is a constant function. �
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The dynamical properties of translation can be summit it :
Theorem 7.6. A translation
— A translation by a totally irrationnal vector is uniquely ergodic.
— A translation has discrete spectrum.
— It is not mixing or weak mixing
— An invertible, ergodic map with discrete spectrum is isomorphic to a translation on a

compact group.
— Its maximal equicontinuous factor is itself.
Remark that a periodic subshift also have a discrete spectrum.

7.3. Coding.

Definition 7.7. A finite partition pPiqiPI of P {Λ is said to be liftable with respect to the
translation Tx : y ÞÑ y ` x of P {Λ if there exists :

— a fundamental domain D Ď P for the action of Λ
— a partition pDiqiPI of D
— some vectors ptiqiPI in P I

such that for every i in I :
— Di ` ti Ď D
— πpDiq “ Pi
— πptiq “ x

where π : P Ñ P {Λ is the quotient map.
Theorem 7.8 (Baryshnikov). On the torus Td consider the coding of a minimal translation
by polytopes, obtained by the billiard map. Then the subshift fulfills

ppnq ď Cnd.

With more hypothesis we obtain an exact formula independant of the direction.

7.3.1. Case of the torus T1. Remark that T1 is isomorphic to S1 and thus we can look at
the following map which is a rotation.

S1 Ñ S1

z ÞÑ ze2iπα

Coding of the translation Consider r0, 1q as a fundamental domain of the torus. Then
a translation is an exchange of two intervals.

Let us denote αthe translation vector. We code the translation with the partitions in
intervals r0, 1´ αq and r1´ α, 1q.

The coding is thus given by
T Ñ t0, 1uN

x ÞÑ punqN

avec un “ φpRnxq et φpxq “

#

0 x P r0, 1´ αr

1 sinon
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Proposition 7.9. If α is irrational, then we obtain sturmian words, of complexity ppnq “
n` 1.

If α is a rational number, then every point has a periodic orbit, thus pupnq ď C.

With this proposition we know that there exists at least one sturmian word and we know
a method to construct a lot of sturmian words.

Example 7.10. Consider the two following translations
T1 Ñ T1

x ÞÑ x` 2
3

T1 Ñ T1

x ÞÑ x` 1
ϕ

We can describe the language of the first one by hands. For the second one, we refer to one
exercice.

7.3.2. Case of the torus T2.

Proposition 7.11. Consider the euclidean torus with fundamental domain r0, 1s2. A trans-
lation of the torus T2 is an exchange of four rectangles.

Proposition 7.12. Consider the torus with an hexagon as fundamental domain. Then a
translation of T2 is an exchange of three rhombi.

7.3.3. Example of Tribonacci fractal.

Theorem 7.13 (Rauzy). On considère une racine complexe α de X3 ´ X2 ´ X ´ 1 et le
tore C{pZ` αZq. Alors il existe un fractal du plan domaine fondamental de ce tore, tel que
la translation z ÞÑ z ` α2 soit conjugué au subshift défini par la substitution 0 ÞÑ 01, 1 ÞÑ
02, 2 ÞÑ 0.

Figure 4. Échange de morceaux dans le tore T2.
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8. Exercices

8.1. Subshifts.
Exercice 1. Consider the map x ÞÑ 2x mod 1 on T1. Prove that for every integer n the
point p

2n´1
, 0 ď p ă 2n ´ 1 is periodic of period n.

Exercice 2. Consider X “ tp01qω, p10qωu. Prove it is a subshift and compute the complexity
function of this subshift.
Exercice 3. Consider X Ă t0, 1uZ the set of sequences which contain exactly one 1. Show
that X is shift-invariant, but that X is not a subshift.
Exercice 4.
(1) What is the closure of the orbit of x “ 01111 . . . under the shift map ?
(2) Is the following subshift minimal, transitive ? X “ t0ωu.

Exercice 5. The subshift is irreducible if for every finite words u, v P Lpxq, there exists
w P LpXq such that uwv also belongs to the language
(1) Find an example of an irreducible subshift.
(2) Find an example of a non irreducible subshift.

Exercice 6. Consider an alphabet with 2 letters, and X the set of sequences such that
un “ 1 implies un`1 “ un`2 “ 0.
(1) Find the elements of X fixed by the shift map.
(2) Prove that the frequency of 1 in an element of X is not well defined.

Exercice 7. Consider the translation by 3
7
on T1.

(1) Describe the different orbits.
(2) Find two invariant measures.

8.2. SFT.
Exercice 8. Describe the subshift of finite type defined by

F “ t00, 101u.

Exercice 9. Compute the entropy of the even shift map.z
Exercice 10. Show that the subshift described by the following graph is sofic : The two
loops have the same name, and the other edges have different names.

Find a SFT which projects on it.
Exercice 11. Consider the following sliding block code on the full shift on a two letter
alphabet :

ϕpabcdq “ b` apc` 1qd mod 2

Consider its restriction to r´1, 2s. Compute the images of 1001, 1101. What can you remark ?
Exercice 12. On a two letters alphabet, describe some properties of the SFT of zero entropy.
Exercice 13. Find the bispecial words of the language of the SFT given by F “ t11u.
Exercice 14. Compute the Parry measure for the SFT given by F “ t111u.
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8.3. Substitutions.

Exercice 15. Consider the following substitution
σ : A˚ Ñ A˚

a ÞÑ aba
b ÞÑ a

(1) Compute the incidence matrix, and show it is a primitive substitution.
(2) Compute the frequencies of the letters.

Exercice 16. Consider a factorial language. A Rauzy graph Gn is a graph where vertices
are words of length n of the language, and there is an oriented arrow between u and v if
there exist two letters a, b such that ua “ bv and ua belongs to the language.
(1) Draw the Rauzy Graph Gn, n “ 2, . . . 4 for the Fibonacci word.
(2) Do the same thing for the Thue Morse word.
(3) What are the differences ?

Exercice 17. Compute the complexity of the language of the subshift defined by the sub-
stitution

σ : A˚ Ñ A˚
a ÞÑ ab
b ÞÑ ac
c ÞÑ a

Exercice 18.
(1) Find one substitution with a non minimal subshift.
(2) find a substitution, where every element of the subshift is periodic.
(3) Find a substitution over a three letters alphabet, where the frequencies of each letter

is a rational number.

Exercice 19. For the Fibonacci substitution compute the measures of the cylinders r0s and
r01s.

8.4. Measures.

Exercice 20. Consider the map

T pxq “

#

x` ϕ´ 1 r0, 2´ ϕq

x` ϕ´ 2 r2´ ϕ, 1q

— Prove that there is no periodic point.
— Is there a link with a rotation on T1 ?
— Consider the first return map S of T on r2´ ϕ, 1q

Spxq “ T kx, k “ inftn, T nx P r2´ ϕqu

Compute S. What is the link between S and T ?
— Consider the subshifts associated to T, S on a 2 letters aphabet. Compute the coding

of x P r2´ ϕ, 1q for the two maps, and show that they are related by a substitution.
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Exercice 21. Consider an ergodic measure µ of the system pX,T q. Let A be a set such that
T´1A Ă A, then prove that µpAq is equal to 0 or 1.

Exercice 22. Prove that the map x ÞÑ px `
?

2q mod 1 defined on T1 is ergodic for the
Lebesgue measure. Compute its spectrum.

Exercice 23. Consider the set X “ r0, 1s.
(1) Prove that every element x P X can be written in an unique way as x “

ř

xn{2
n with

xn P t0, 1u and xn non ultimately equal to 1.

(2) Now we define T : X Ñ X by Tx “ y with

$

’

&

’

%

yn “ xn`2, n “ 2k ` 1

y2 “ x1

yn “ xn´2, n “ 2k

. Prove that T

preserves the Lebesgue measure.
(3) Prove that pX,T q is transitive.

Exercice 24. Consider the map x ÞÑ 1
x

mod 1. Prove that the following measure dµ “ fdx

is invariant : fpxq “ 1
log 2

1
1`x

Exercice 25. Consider the dynamical system defined over r0, 1s byx ÞÑ 4xp1 ´ xq. Prove
that the following measure is an invariant measure

µpBq “
1

π

ż

B

dx
a

xp1´ xq

Exercice 26. Consider the system x ÞÑ ϕx mod 1 and let us denote α “ ϕ´1. Prove that
the measure dµ “ hpxqdx is an invariant measure :

x ÞÑ hpxq “

#

1
α`α3 r0, αs
α

α`α3

Exercice 27. Consider the system with X “ r0, 1s and

x ÞÑ Tx “

#

2x 0 ď x ď 1{2

2p1´ xq x ą 1{2

Prove that the Lebesgue measure is invariant and ergodic. To which subshift is related this
map ?
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