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Goal.

Setting: (X ,T )

X is a Cantor Set and T is a minimal homeomorphism on it.

To "model" a minimal Cantor system with a sequence of tower partitions
and morphisms.

We are going to learn about:

Bratteli Diagrams, Vershik systems, Kakutani-Rokhlin partitions, Strong
Orbit equivalence (with the time permission).
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Minimal Dynamical Syetms on Cantor Sets.

For (X ,T ) the followings are equivalent.

(X ,T ) is minimal.

Every point has a dense orbit.

For every clopen set U,

∪∞n=0T−n(U) = X .

In fact, compactness implies that

∀ clopen U ⊂ X , ∃ N; ∪N
n=0T−n(U) = X .

Examples: Odometers, primitive substitution, interval exchange
transformations,... They all can be considered as a Bratteli-Vershik
system.
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Let’s see what a Bratteli-Vershik system is.
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Bratteli Diagram.

We construct an infinite graph

B = (V ,E ).

The graph B has infinite number of vertexes that are grouped
in an infinite sequence of finite sets:

V = V0 t V1 t V2 t · · · , V0 = {v0}, |Vi | = ni

So
Vi = {v (i)

1 , v (i)
2 , . . . , v (i)

ni }.
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.

The set of edges of the graph is:

E = E0 t E1 t E2 t · · · ,

where Ei is the finite collection of edges that each one connects a
vertex in Vi to a vertex in Vi+1

8 Siri-Malén Høynes

V0

E1M1 =

[
1
1

]

V1

E2M2 =




5 2
4 1
1 1




V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1: An example of a Bratteli diagram

3.3. Bratteli diagrams and dimension groups. (As general references for the material in this

section we refer to [E], [HPS] and [GPS1].)

3.3.1. Bratteli diagrams A Bratteli diagram (V, E) consists of a set of vertices V = !∞
n=0Vn and a

set of edges E = !∞
n=1En, where the Vn’s and the En’s are finite disjoint sets and where V0 = {v0}

is a one-point set. The edges in En connect vertices in Vn−1 with vertices in Vn. If e connects

v ∈ Vn−1 with u ∈ Vn we write s(e) = v and r(e) = u, where s : En → Vn−1 and r : En → Vn are

the source and range maps, respectively. We will assume that s−1(v) $= ∅ for all v ∈ V and that

r−1(v) $= ∅ for all v ∈ V \V0. A Bratteli diagram can be given a diagrammatic presentation with

Vn the vertices at level n and En the edges between Vn−1 and Vn. If |Vn−1| = tn−1 and |Vn| = tn
then the edge set En is described by a tn × tn−1 incidence matrix Mn = (mn

ij), where mn
ij is the

number of edges connecting vn
i ∈ Vn with vn−1

j ∈ Vn−1 (see Figure 1). Let k, l ∈ Z+ with k < l and

let Ek+1 ◦ Ek ◦ · · · ◦El denote all the paths from Vk to Vl. Specifically,

Ek+1 ◦Ek ◦· · ·◦El = {(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1} .

We define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice that the corresponding

incidence matrix is the product MlMl−1 · · · Mk+1 of the incidence matrices.

Definition 3.16. The Bratteli diagram (V, E) with incidence matrices (Mn)∞
n=1 has the ERS-

property (ERS = Equal Row Sum) if the row sums of the incidence matrices are constant. Let

the constant row sum of Mn be rn. We associate the supernatural number
∏∞

n=1 rn to (V, E). (See

the comments after Definition 3.23.)

Definition 3.17. Given a Bratteli diagram (V, E) and a sequence 0 = m0 < m1 < m2 < · · ·
in Z+, we define the telescoping of (V, E) to {mn} as (V ′, E′), where V ′

n = Vmn
and E′

n =

Emn−1+1 ◦ · · · ◦Emn
, and the source and the range maps are as above.
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...

the number of edges between v (i)
` and v (i+1)

k is equal to Mi(`, k).
So Mi is a |Vi+1| × |Vi | matrix.

8 Siri-Malén Høynes

V0

E1M1 =

[
1
1

]

V1

E2M2 =




5 2
4 1
1 1




V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1: An example of a Bratteli diagram

3.3. Bratteli diagrams and dimension groups. (As general references for the material in this

section we refer to [E], [HPS] and [GPS1].)

3.3.1. Bratteli diagrams A Bratteli diagram (V, E) consists of a set of vertices V = !∞
n=0Vn and a

set of edges E = !∞
n=1En, where the Vn’s and the En’s are finite disjoint sets and where V0 = {v0}

is a one-point set. The edges in En connect vertices in Vn−1 with vertices in Vn. If e connects

v ∈ Vn−1 with u ∈ Vn we write s(e) = v and r(e) = u, where s : En → Vn−1 and r : En → Vn are

the source and range maps, respectively. We will assume that s−1(v) $= ∅ for all v ∈ V and that

r−1(v) $= ∅ for all v ∈ V \V0. A Bratteli diagram can be given a diagrammatic presentation with

Vn the vertices at level n and En the edges between Vn−1 and Vn. If |Vn−1| = tn−1 and |Vn| = tn
then the edge set En is described by a tn × tn−1 incidence matrix Mn = (mn

ij), where mn
ij is the

number of edges connecting vn
i ∈ Vn with vn−1

j ∈ Vn−1 (see Figure 1). Let k, l ∈ Z+ with k < l and

let Ek+1 ◦ Ek ◦ · · · ◦El denote all the paths from Vk to Vl. Specifically,

Ek+1 ◦Ek ◦· · ·◦El = {(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1} .

We define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice that the corresponding

incidence matrix is the product MlMl−1 · · · Mk+1 of the incidence matrices.

Definition 3.16. The Bratteli diagram (V, E) with incidence matrices (Mn)∞
n=1 has the ERS-

property (ERS = Equal Row Sum) if the row sums of the incidence matrices are constant. Let

the constant row sum of Mn be rn. We associate the supernatural number
∏∞

n=1 rn to (V, E). (See

the comments after Definition 3.23.)

Definition 3.17. Given a Bratteli diagram (V, E) and a sequence 0 = m0 < m1 < m2 < · · ·
in Z+, we define the telescoping of (V, E) to {mn} as (V ′, E′), where V ′

n = Vmn
and E′

n =

Emn−1+1 ◦ · · · ◦Emn
, and the source and the range maps are as above.

Prepared using etds.cls

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems



For diagram (1): all Mi = [2] and for diagram (2):

M0 =
[
1
1

]
, M1 =

2 3
1 4
1 2

 and M2 =
[
3 1 1
2 1 2

]
, . . .

Each edge e has a source vertex: s(e) and a range vertex: r(e). In fact:

r : Ei+1 → Vi+1, s : Ei+1 → Vi
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Partial ordering on E .
For every i ≥ 1 and every v ∈ Vi , consider the set:

Ev = {e ∈ Ei : r(e) = v}

and make a lexicographic ordering on it.
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FIGURE 4.

By a modification of the ‘symbol splitting’ procedure in [GPS, §3], Forrest proved the
following lemma, which will be useful to us.

LEMMA 9. [Fo, Lemma 15] Let B = (V ,E,≥) be a stationary, properly ordered Bratteli
diagram. ThenB ≈ B ′ = (V ′, E′,≥′), where B ′ is again stationary and properly ordered,
and with the added property that there are no multiple edges between level 0 and level 1.
(By the above proposition, (XB, VB) and (XB ′ , VB ′) are isomorphic.)

Proof. By taking a sufficiently high power of the incidence matrix C of (V ,E) (this
corresponds to a periodic telescoping of the diagram), we may assume that each row sum
of C is greater than or equal to the maximum number of edges between a vertex at level
1 and the top vertex (i.e. level 0). We now proceed by introducing new vertices between
two successive levels, the number of which is the same as |E1|, i.e. the number of edges
between level 0 and level 1. One may now construct a properly ordered Bratteli diagram
with these added levels, so that one gets the original by telescoping. (This construction
is not unique.) By instead telescoping to the new levels introduced one gets the desired
B ′ = (V ′, E′,≥′). We will give a diagrammatic example which will illustrate how to
proceed in the general case (cf. Figure 4). !

2.6. Kakutani equivalence.

Definition 8. The Cantor minimal systems (X, T ) and (Y, S) are Kakutani equivalent if
they have (up to isomorphism) a common derivative, i.e. there exist clopen sets U (in X)
and V (in Y ), so that the induced systems on U and V , respectively, are isomorphic.

We will relate Kakutani equivalence to Bratteli diagrams—the relevant fact being
change of the order unit.
Observe first that if (V ,E) is a Bratteli diagram with associated dimension group

G = K0(V ,E), then any finite change of (V ,E), i.e. adding and/or removing a finite
number of edges (vertices), thus changing (V ,E) into a new Bratteli diagram (V ′, E′),
does not change the isomorphism class of G, but does change the order unit. In fact,

In this way for every i , Ei will be a partially ordered set.Indeed, Every two
edges e, e′ are comparable, e ≤ e′, if and only if r(e) = r(e′).
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...

Then we say that B = (V ,E ,≤) is an ordered Bratteli diagram.

Remark. Since the ordering on r−1(v) is linear (lexicographic) we
can consider the minimum ordinal number and the maximum
ordinal number for it.

r−1(v) = {emin, . . . , emax}.
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Finite paths.
For every `, k ∈ N, k < ` consider the set of all (finite) paths between V`

and Vk :
P`,k = {(ek+1, e2, . . . , e`) : r(ei) = s(ei+1), s(ek+1) ∈ Vk , r(e`) ∈ V`} .
Below, there are 5 finite paths from level V0 to level V2.
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Orderings on finite paths.
consider all finite paths from V` to a fixed vertex in Vk . In fact,

(ek+1, e2, . . . , e`) > (e′k+1, e′2, . . . , e′`)
if and only if

∃i ; k + 1 ≤ i ≤ `; ei > e′i , ∀i < j ≤ ` ej = e′j .
Below : (e1, e2, e3) ≤ (f1, f2, e3) ≤ (f1, g1, g2).
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Existence of infinite min and max paths.

Fist of all, by Konig’s lemma, there are infinite paths on each Bratteli
diagram.
konig’s lemma. Every infinite, locally finite and connected graph has
infinite paths.

Proposition
For every v ∈ Vn ⊂ V there exists a unique finite path in Emax (resp.
Emin) from v0 ∈ V0 to v.

Let Emax (resp. Emin) be the set of all maximal (resp. minimal) edges in
the partially ordered set E and consider the subdiagram(s) containing
only Emax (resp. Emin).

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems



Existence of infinite min and max paths.

Fist of all, by Konig’s lemma, there are infinite paths on each Bratteli
diagram.
konig’s lemma. Every infinite, locally finite and connected graph has
infinite paths.

Proposition
For every v ∈ Vn ⊂ V there exists a unique finite path in Emax (resp.
Emin) from v0 ∈ V0 to v.

Let Emax (resp. Emin) be the set of all maximal (resp. minimal) edges in
the partially ordered set E and consider the subdiagram(s) containing
only Emax (resp. Emin).

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems



Existence of infinite min and max paths.

Fist of all, by Konig’s lemma, there are infinite paths on each Bratteli
diagram.
konig’s lemma. Every infinite, locally finite and connected graph has
infinite paths.

Proposition
For every v ∈ Vn ⊂ V there exists a unique finite path in Emax (resp.
Emin) from v0 ∈ V0 to v.

Let Emax (resp. Emin) be the set of all maximal (resp. minimal) edges in
the partially ordered set E and consider the subdiagram(s) containing
only Emax (resp. Emin).

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems



836 R. H. HERMAN . I. F. PUTNAM and C. F. SKAU ORDERED BRATTELI DIAGRAMS. DIMENSION GROUPS AND TOPOLOGICAL DYNAMICS 837

X = liE! PO,k

"V\

Ernex

rlrl

f:Em..

where each PO,k is regarded as a topological space with the discrete topology and the
map from PO, k +1 to PO•k simply sends (e l , . . . , ek+d to (e l , .. · , el l, for each k 1.We

3. From Ordered Bratteli Diagrams to Dynamical Systems

Here, we describe how to construct an essentially minimal zero-dimensional system
(X, cp, y) from a given simple ordered Bratteli diagram.
First wedefine the space X as the inverse limit (in the category of compact Ha usdorff

spaces)

The edges are labeled to indicate the order (1 < 2). In the case r- 1{v} is a single edge,
we omit the label 1.

Remark 2.10. The conditions that Em.. and Em,ncontain unique infinite paths are
independent-in the diagram in 2.9, for example:,.....
It is also possible that the infinite paths in Em.. and Em1n coincide (see Example 3). p.8;."
............. ---

follows. We contract the diagram again using the same procedure for Emin· The
resulting diagram satisfies the desired conditions. 0

Remark 2.9. We draw Bratteli diagrams as shown.

Proposition 2.4. If (V,E, z) is an ordered Bratteli diagramand (V', E') is obtained
by contracting (V,E) to a subsequence, then the order given abovemakes (V', E', z) an
orderedBratteli diagram.

The proof is straightforward and we omit it.
Again, there is an obvious notion of isomorphism between ordered Bratteli diagrams

and we let denote the equivalence relation generated by isomorphism and
(V,E, z ) (V', E', if (V',E' , is obtained by contracting (V,E,
For a given ordered Bratteli diagram, we let Em.. and Em1ndenote the maximal and

minimal edges of E, respectively.

Proposition 2.7. If twoorderedBratteli diagramsareequivalentandone isessentially
simple, then so is the other.

For calculations of examples, the following is sometimes useful.

Definition 2.6. We say that an ordered Bratteli diagram (V,E, is essentially
simple if there are unique infinitely long paths in Em.. and Em1n.That is, there is only
one sequence (e l , e2 , •• • ) with each ei in Em.. (Em1n, respectively) and s(ei+d = r(e;), for
all i 1.
The following result is an immediate consequence of the definitions and we omit the

proof.

Proposition 2.5. Let (V,E, z) be an orderedBraueli diagram. For each v in V, there
is a unique path in Em.. (Em1n) from vo to v; i.e., there is a uniqueelement (eI , . . . , en) in
PO•l with s(eI" .. ,en) = Vo and r(e1>' •• , en)= v and each e, in Em..(Em,n).
Proof. Let ek be the maximum element of r" {v}. Inductively define el-1 to be the

maximum element of r - I {s(ei)}' for i = k, k - 1,.. .,2. 0

A simple argument shows that every infinite tree contains an infinite path.

Proposition 2.8. Every essentially simple ordered Bratteli diagram is equivalent to
some (V,E, satisfying the following condition.

If e and e' are in Em.. (or Emi.) with r(e) = s(e'), then e is in the infinite path in Em..
(Emi. , respectively).

Proof. Let (e l , e2,"') be the unique infinite path in Em.. and let Tdenote the graph
obtained from Em.. by deleting {el,e2 , • •• }. Each connected component of T is finite
for otherwise it would contain an infinite path, contradicting the uniqueness of an
infinite path in Em... Let no = O. Having defined nl for k 0, we choose nk +1 so that
no vertex in V,'k is connected to any vertex in v..k+1by a path in T.We contract our
diagram to the subsequence {nkh2:o' To verify that this diagram satisfies the desired
conditions it sufficesto consider a path from v..kto v..k+2 in Em.. of the original diagram
and show that the first part from v..kto v..k+1is in (el>e2 , ... ). Since there is no path in
T from v..k+1to v..k+2, in that part of the path is in (el,e2 , ... ). Since Em..
is a tree, the preceding the path are also in (el , e2"") and the conclusion

12:t.(j<

c/
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...

Then by the Konig’s lemma there exist infintie paths in these two
subdiagrams.

If we start from v0, we can just pass through edges with minimal (resp.
maximal) ordinal numbers to make infinite mini (resp. max) path(s).
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The topological space XB.

For a Bratteli diagram B = (V ,E ) consider the set of all infinite path
with the initial source v0 ∈ V0:

XB = {(e1, e2, . . . ) : e1 ∈ E1, r(ei) = s(ei+1)}.

Equipe XB with the topology generated by the following cylinder sets:

U(e1, e2, . . . , ek) = {(f1, f2, . . . ) ∈ XB ; fi = ei , 1 ≤ i ≤ k}.

So we consider the set of all these cylinder sets as the basis of the
topology on XB .
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Cylinder sets are in fact finite paths from v0.

Each of the above cylinder sets is also closed. Because the number
of finite paths from the top is finite and so the complement of each
cylinder is a finite union of such cylinder sets. So they are clopen.

So it can be seen that XB with this topology is a compact Hausdorff
space with a countable basis of clopen sets. It is totally
disconnected. (Exercise.)

Remark. To define the topology we didn’t need the ordering.
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XB with the above (second countable) topology is metrizable. So
there exists a metric d : X × X → R that is compatible with this
topology.

Therefore, for every δ > 0 there exists k0 ∈ N ∪ {0} so that

d(x , y) < δ ⇒ x , y agree on their first k0 edges.

So each finite path of depth k is a neighbourhood around the
(points) all infinite paths that their initial k edges are that finite
path.
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Telescoped Bratteli diagram.

Consider (B,V ) and fix a sequence (ni)i≥1 and consider a new diagram
B′ = (V ′,E ′) where

M ′i = Mni ×Mni−1 × · · · ×Mni−1+1

This new diagram is called a telescoped diagram from B = (V ,E ).

the edge set En is described by a tn x tn- 1 incidence matrix. (See Fig. 1).

Level . Incidence matrix 5 (e)
n-l Vn-l

(11 1)
020

n V'n

. En+l .n+l Vn+1
Figure 1.

Now let k, IE Z+ with k < I and let Ek+1 0 Ek+2 0 . . . 0 E1 denote all paths
from h to VI. Specifically,

Ek+1 0 ... 0 E1 = {(ek+l,'" ,el) lej E Ej, i = k+1,"', l;
r(ed = s(ej+l),i = k +1,"', I-I}.

Definition 3.2. Given a Bratteli diagram E) and a sequence ma = 0 --::
ml < m2 < ... in Z+, we define the telescoping (cdlleJ contraction in [17))
of (V, E) to {mn} as (V', E'), where = Vmn and = Emn_d 1 0" • 0 Emn
and the range and source maps are as above.

For example, if we remove level n of Figure 1 we get a telescoping to levels
n -1 and n+1 as indicated in Figure 2. Note that the new incidence matrix
is the product of the two incidence matrices of Figure 1.

26

(
. 1 3 1)
222

E 0n

Figure 2.

• Vn-1

The converse operation of telescoping a Bratteli diagram is microscoping,
i.e. filling in new levels - thus making the diagram more" detailed" - so
that by telescoping to the old levels we get the original diagram back.
The Bratteli diagram (Y, E) gives rise to an approximately finite-dimensional
(AF) C·-algebra AF(V, E) as follows: at the vertex v E V we put Mk(v)(C),
the k(v) x k(v) matrix algebra over C , where k(v)-is the number of paths
from the top vertex VQ E YO to v . (We put C at vQ.) At level n we get a
(finite-dimensional) multi-matrix algebra An of the form

h r z {(n) (n)} A h . . hi h i C·were V n = VI , ••• , Vt n • n as a unique norm In w IC It IS a -
algebra. The Bratteli diagram encodes the various (unital) inclusion maps
in+! : An -j. An+!' By definition AF(V, E) is the C--algebraic limit of the
system

We let I"V denote the equivalence relation on Bratteli diagrams generated
by isomorphism and telescoping. It is not hard to show that (V!, E1 ) I"V

(V 2 , E 2 ) if and only if there exists a Bratteli diagram (V,E) so that -tele-
scoping (V,E) to odd levels a< 1 < 3 < ... yields a telescoping of either
(VI, E 1 ) or (V 2 , E 2 ) , and telescoping (V, E) to even levels a< 2 < 4 < ...

27
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Equivalent Bratteli diagrams.

Two Bratteli diagrams B = (V ,E ) and B′ = (V ′,E ′) are called
equivalent if they can be constructed by telescoping of a third
diagram along two subsequences.

In particular, Every telescoped form of a Bratteli diagram
B = (V ,E ) is equivalent to it.
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Microscoping.
ON TOPOLOGICAL RANK OF FACTORS OF CANTOR MINIMAL SYSTEMS 13

B = (V, E, �) B0 = (V 0, E0, �0)

1 2 3 1 2

1 21 1

Vk�1

Vk

V 0
k�1

V 0
k

V 0
k+1

v1 v2 v3

u1 u2 u3

v1 v2 v3

w1 w2

u1 u2 u3

1 2 3 1 2 3 4 5 1 2

...

...

...

...

Figure 2.

Proof. Let W = {w1, . . . , ws} where wi’s are distinct. Define the set of
vertices of B0 = ((V 0

n)n�0, (E0
n)n�1,�0) by

V 0
n = Vn for 0  n < k, V 0

k = W, and V 0
n = Vn�1 for n > k.

For the set of edges of B0, first we set

E0
n = En for 1  n < k, and E0

n = En�1 for n � k + 2.

It remains to define E0
k and E0

k+1. Since every w 2 W is a word in V ⇤
k�1, we

can define (uniquely) a partially ordered set of edges E0
k from V 0

k�1 = Vk�1

to V 0
k = W such that �B0

k (w) = w, for every w 2 W . To define E0
k+1, first

note that for every v 2 V 0
k+1 = Vk we have

(4.2) �B
k (v) = wi1wi2 · · · wir ,

for some wi1 , wi2 , . . . , wir in W depending on v. (Note that this represen-
tation of �B

k (v) in terms of the words of W is not necessarily unique but
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Symbol Splitting.

This is a kind of microscoping that gives us an equivalent Bratteli
diagram.

diagrams generated by isomorphism and by telescoping. One can show
that B1 B2 , where B1 = (VI, E\ 2:1 ), B2 = (V 2

, E2 , 2: 2 ) , if and only if
there exists an ordered Bratteli diagram B = (V, E, 2:) so that telescoping
B to odd levels 0 < 1 < 3 < ... yields a telescoping of B' (or B2 ) , and
telescoping B to even levels 0 < 2 < 4 < ... yields a telescoping of the
other. This is analogous to the situation for the equivalence relation I"V on
Bratteli diagrams as we discussed above.

In contrast to the situation for Bratteli diagrams not every mieroscoping
procedure will render equivalent ordered Bratteli diagrams. However, the
special microscoping procedure that we will call symbol splitting does give
equivalent diagrams. Symbol splitting between two consecutive levels,

say level n -1 and level n, of the ordered Bratteli diagram B = (V, E, 2:) is
done by filling in one new level between the two so that the number of new
vertices equals the number of edges in En , and so that there is exactly one
path from level n - 1 to level n going through each of the new vertices. It
is easy to see how to introduce an order on the edge set of the new diagram
so that by telescoping one gets the original ordered diagram back. Figure
3 illustrates symbol splitting (the ordering of the edges are indicated).

v • ..n-l VEn J1 2
"V ,

n
Figure 3

Let B = (V, E,"2:) be an ordered Bratteli diagram. Let XB denote the
associated infinite path space, i.e.

We will exclude trivial cases and assume henceforth that XB is an infinite
set. Two paths in XB are said to be cofinal if they have the same tails , i.e.

29
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Stationary Bratteli Diagram.
The Bratteli diagram (B,V ,≤):

is called of finite rank d If there exists a telescoped form of it such
that

∀ i ≥ 1 : |Vi | is the constant d .

is called stationary if there exists a telescoped form of it so that it is
of finite rank d for some d ∈ N and for every i ≥ 1:

Mi = M.

is called stationary ordered if it is stationary and when we fix some
j ∈ {1, · · · , d} then

∀ i ≥ 1 : the partial orderings on r−1(v (i)
j ) are the same.
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Example.
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Simple Bratteli diagrams..

The Bratteli diagram B = (V ,E ) is called simple if there exists a
telescoped of it, say B′ = (V ′,E ′, {M ′i }i), such that

∀i ≥ 1 : M ′i > 0.

It means that for every two different vertices u, v in two different
levels k, `, there exists at least one finite path between these two
levels that connects u to v .
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Regardless of the ordering, the following diagram is not simple.
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This implies that XB , equipped with the above topology, does not have
any isolated point and therefore, it is a Cantor set.

An ordered diagram B = (V ,E ,≤) is called simple ordered if
B = (V ,E ) is simple and with its ordering it has a unique infinite
min path and a unique infinite max path. i.e. there are exactly two
infinite paths (e1, e2, . . . ) 6= (f1, f2, . . . ) such that

∀i : ei ∈ Emin, fi ∈ Emax.

Remark. In some literatures, an ordered Bratteli diagram which has
unique minimal and maximal infinite paths is called properly
ordered. Note that such a diagram may not necessarily be simple.
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With respect to the ordering, the following diagram is not simple.
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Vershik system.

Consider a simple ordered Bratteli diagram B = (V ,E ,≤) and the
Cantor set XB . Define a map TB : XB → XB with

TB(xmax) = xmin.

For every point xmax 6= x = (e1, e2, . . . ) ∈ XB if i0 is the first i that
ei /∈ Emax then this edge has a successor (between all the edges
with the range r(ei0)). Let’s call its successor by fi0 then

TB(e1, . . . , ei0 , . . . ) = (emin, emin, . . . , emin, fi0 , ei0+1, . . . ).

(XB ,TB) is called the Vershik system on (B,≤).
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It is easy to see that
TB is a homeomorphism. (Exercise.)
(XB,TB) is a minimal system. i.e. every point (infinite path)
has a dense orbit. (Exercise.)
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You wanna know some examples?

Proposition
Let (X ,T ) be a minimal Cantor system and x ∈ X. There exists a
Bratteli-Vershik system (XB,TB) that is conjugate to (X ,T ).

To prove this we need to know Kakutani-Rokhlin partitions of
minimal Cantor systems. For doing that we have to recall the
notion of first return time map.
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First Return Time map.

Let (X ,T ) be a minimal Cantor system and U
clopen
⊆ X . For every x ∈ X

the the first return time map is defined by

n(x) = inf{n ∈ N : T nx ∈ U} > 0.

n(x) exists for every x as the system is minimal. In fact, the above sets

have bounded gaps. (Exercise.) The induced system on U is the pair

(U,TU) where
TU(x) = T n(x)x .

In some literatures this system (U,TU) is called the derivative of (X ,T )
on U.
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