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we want to show that:

When (X ,T ) is given to us,

there exists a Bratteli-Vershik system (XB,TB) that is conjugate to
that.

To show this we need Kakutani-Rokhlin partitions that are based
on the notion of first return time to a clopen set.
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First Return Time map.

Let (X ,T ) be a minimal Cantor system and U
clopen
⊆ X .

For every x ∈ X
the the first return time map is defined by

n(x) = inf{n ∈ N : T nx ∈ U} > 0.

n(x) exists for every x as the system is minimal. In fact, the above sets

have bounded gaps. This was because:

∀ clopen U ⊂ X , ∃ N; ∪N
n=0T−n(U) = X .
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Example, return words for subshifts.
Consider (X , S) as a minimal two-sided subshift, a word w and
U = [w ] ⊂ X .

By minimality

∀x ∃i ; x[i,i+|w |−1] = w ⇒ ∃j > 0; x[−j,i−1] ∈ R(w).

x:

So S i(x), S−j(x) ∈ U and one of the the return times is:

|v | = |i − (−j)|.

By minimality there are finitely many of such v :

R(w) = {v1, v2, . . . , vm} : m <∞.

So for U = [w ] and x :
n(x) = min

1≤i≤m
|vi |.
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Kakutani-Rokhlin partitions.
Let (X ,T ) be a minimal Cantor system where T is a homeomorphism. A
Kakutani-Rokhlin partition, say P, of (X ,T ) is a collection of towers of
the form:

In fact,
P = {T j(Bi) : 1 ≤ i ≤ m, 1 ≤ j ≤ hi}

where {Bi}m
i=1 are disjoint clopen subsets of X and hi ∈ N.

(T hiBi) ⊆ ∪m
i=1Bi , X = ∪m

i=1 ∪
hi
j=1 T j(Bi).
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...

B = ∪m
i=1Bi is called the basis of partition.

for each 1 ≤ i ≤ m, {Bi ,TBi , . . . ,T hiBi} is called a tower. So
the partition is a finite union of towers.
For each 1 ≤ i ≤ m the first return time to B for the points of
Bi is hi

The map T is defined explicitly every where except the top
levels of the towers. We just know that the top level will be
mapped to B but where exactly? we don’t know.
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Example, using return words.

Consider (X , S) as a minimal two-sided subshift, a word w and
U = [w ] ⊂ X . By minimality

∀x ∃i ; x[i ,i+|w |−1] = w ⇒ ∃j > 0; x[−j,i−1] ∈ R(w).

In fact, by minimality the set of return words to w is finite:

R(w) = {v1, v2, . . . , vm} : m <∞.

So for each vi ∈ R(w), i = 1, . . . ,m we have a tower above that.
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...
So let B = ∪m

i=1[Vi ],
Ti = {S j([vi ]) : vi ∈ R(w), 0 ≤ j ≤ |vi |}, i = 1, . . . ,m

are the towers and
B = {Ti}m

i=1

is a Kakutani-Rokhlin partition for (X , S).
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Example.
Consider the two sided subshift (O(x), S) generated by the primitive
substitution:

σ : 0 7→ 001, 1 7→ 01
where x is the fixed point of σ:

x = 01001010010010100101 . . . .

Let U = [w ], with w = 01, as a clopen set around the fixed point of the
substitution: Then

R(w) = {01, 010}
Therefore, B = {[0101],S[(0101]), [01001], S([01001]), S2([01001])} is a
K-R partition of (X , S).
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Nested K-R partitions.
The K-R Partition B′ with basis B′ is called nested in the K-R partition
B with basis B if B′ ⊂ B and B′ is a refinement of B, i.e.

∀A ∈ B′ ∃ B ∈ B; A ⊂ B.

Roughly speaking, we cut and stack the towers of B to create B′.
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Refining sequence of K-R partitions.

A sequence of K-R partitions {B(n)}n≥0 with basis B(n) is called refining
if

⋂
n B(n) = {x}.

The sequence {B(n)}n≥0 is nested, i.e. B(n+1) is nested in B(n) for
every n.⋃

n B(n) generates the topology of X .
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K-R partitions of minimal Cantor systems.

Proposition
Let (X ,T ) be a minimal Cantor system and x0 ∈ X. There exists a
refining sequence of K-R partitions of X that their basis converge
to {x0}.

Proof. Fix a sequence of increasing finite partitions

P1 � P2 � · · · � Pn � · · ·

that generates the topology of X . Fix a clopen set C that x0 ∈ C .
We know that

∀x ∈ C : nC : X → Z; nC (x) = inf{n > 0 : T nx ∈ C}.

Since (X ,T ) is minimal, nC is well-defined and continuous and in
fact,

C = ∪m
i=1Ci ; ∀x ∈ Ci : nC (x) = hi ∈ N.
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...
Let’s define a partition by the above subsets Ci , i = 1, . . . ,m.

B(1) := {T jCi : 0 ≤ j ≤ hi − 1, 1 ≤ i ≤ m}.
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...

every two cells in B(1) are disjoint. This is just because of definition
of nC and T being a homeomorphism. (exercise)
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...

B(1) covers X . Because

W =
m⋃

i=1

hi−1⋃
j=1

Cij =
m⋃

i=1

hi−1⋃
j=1

T jCi

is a finite union of clopen sets and therefore is closed.

Moreover, W is T -invariant. Because T maps the top levels
to C = ∪m

i=1Ci . So by minimality W = X .
Consequently, B(1) is a K-R partition for (X ,T ). Now we show
that we can have B(1) finer than the partition P1.
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...

Suppos that there exists some U ∈ P1 so that it has intersection with Ci j
but Ci j is not contained in U. As the number of elements in B(1) is
finite, consider the least diameter δ of intersections of Ci j ’s with the
elements of P1 and cut the towers of B(1) into finitely many thiner towers
(with diameter δ) that each cell of these new towers are contained in an
element of P1.
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...

Now to define a K-R partition B(2) that refines B(1) and P2.
Without loss in generality suppose that x0 ∈ C1.

So consider a
clopen set C ′ ⊂ C1 around the point x0 and partition it based on
the values of the continuous map nC ′ :

C ′ =
n⋃

i=1
C ′i , nC (C ′i ) = h′i .

Let
B(2) := {T jC ′i : 0 ≤ j ≤ h′i − 1, 1 ≤ i ≤ n}.

By similar arguments as for B(1), one can deduce that B(2) is a
K-R partition. Now we show that this is finer than B(1) and could
be constructed to be finer than P2 as well.
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...

About refining P2 similar arguments as for the relation between B(1)

and P1 will work. we cut the towers as much as needed to have this
property.

About B(1): Since C ′ ⊂ C1, the initial h1 levels of all the towers in
B(1) are arranged in the same shape as the first tower of B(1) with
base C1. And since T h1(C ′) ⊂ Ci for some other i = 1, . . . ,m the
next hi levels of each tower of B(2) is arranged in the same way as
the associated i ’th tower in B(1) and in fact, each of these levels is
contained in a unique level of the associated i ’th tower in B(1).
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...

By continuing the above procedure inductively by choosing nested
sequence of clopen subsets of C1 around x0 and constructing
towers based on them and so a sequence of refining K-R partitions
that each of them refines a new Pn (increasingly by n), we will
have the intersection of all the bases of the towers to be {x0}.
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Example.

Let’s get back to the primitive substitution:

σ : 0 7→ 001, 1 7→ 01

and C = [w ] , w = 0, as a clopen set around the fixed point of the
substitution:

x = 01001010010010100101 . . . .

Then

R(w) = {0, 01}, [0] = [00] ∪ [01] = [001] ∪ [01] = [σ(0)] ∪ [σ(1)].

So we should have two towers with disjoint bases [001] and [01]. So

B(1) = {[σ(0)], S([σ(0)]), S2([σ(0)]), [σ(1)], S([σ(1)])}
= {T (1)

1 ,T (1)
2 }
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...
Now let C ′1 = [w ′],w ′ = 001. Then

R(w) = {001, 00101}, [001] = [00100101] ∪ [00101] = [σ2(0)] ∪ [σ2(1)]

So we should have two towers with disjoint bases [001001] and [00101]:

B(2) = {[σ2(0)], . . . ,S7([σ2(0)]), [σ2(1)], . . . ,S4([σ2(1)])}
= {T (1)

1 ,T (1)
1 ,T (1)

2 ,T (1)
1 ,T (1)

2 }

= {T (2)
1 ,T (2)

2 }

If you continue this procedure inductively, you will get

B(n) = {S jσn([a]) : a = 0, 1, 0 ≤ j < |σn(a)|}
= {T (n−1)

1 ,T (n−1)
1 ,T (n−1)

2 ,T (n−1)
1 ,T (n−1)

2 }

= {T (n)
1 ,T (n)

2 }
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General case.

Proposition
For every aperiodic two sided minimal subshift (X , S) associated to a
primitive proper substitution σ : A→ A∗ that A is a finite alphabet,

B(n) = {S jσn([a]) : a ∈ A, 0 ≤ j < |σn(a)|}, n ≥ 0

is a refining sequence of K-R partitions.

Remark. Proper means that there are letters r , ` ∈ A that for every
a ∈ A, σ(a) starts with r and ends up with `.

To prove this proposition knowing the notion of recognizability will ease
it.
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For instance:
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