Bratteli-Vershik Models of Cantor Minimal Systems

Maryam Hosseini

CIMPA School, Bejaia, Algeria

07-18 November 2021

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

When (X, T) is given to us,

there exists a Bratteli-Vershik system (X_B, T_B) that is conjugate to that.

<回と < 回と < 回と

When (X, T) is given to us,

there exists a Bratteli-Vershik system (X_B, T_B) that is conjugate to that.

To show this we need Kakutani-Rokhlin partitions that are based on the notion of first return time to a clopen set.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let (X, T) be a minimal Cantor system and $U \subseteq^{\text{clopen}} X$.

イロン 不同 とくほど 不同 とう

크

Let (X, T) be a minimal Cantor system and $U \subseteq^{\text{clopen}} X$. For every $x \in X$ the the first return time map is defined by

 $n(x) = \inf\{n \in \mathbb{N} : T^n x \in U\} > 0.$

Let (X, T) be a minimal Cantor system and $U \subseteq^{\text{clopen}} X$. For every $x \in X$ the the first return time map is defined by

 $n(x) = \inf\{n \in \mathbb{N} : T^n x \in U\} > 0.$

n(x) exists for every x as the system is minimal.

(4月) トイヨト イヨト

Let (X, T) be a minimal Cantor system and $U \subseteq^{\text{clopen}} X$. For every $x \in X$ the the first return time map is defined by

 $n(x) = \inf\{n \in \mathbb{N} : T^n x \in U\} > 0.$

n(x) exists for every x as the system is minimal. In fact, the above sets have bounded gaps.

(4月) トイヨト イヨト

Let (X, T) be a minimal Cantor system and $\bigcup_{i=1}^{\text{clopen}} X$. For every $x \in X$ the the first return time map is defined by

 $n(x) = \inf\{n \in \mathbb{N} : T^n x \in U\} > 0.$

n(x) exists for every x as the system is minimal. In fact, the above sets have bounded gaps. This was because:

 $\forall \text{ clopen } U \subset X, \exists N; \cup_{n=0}^{N} T^{-n}(U) = X.$

A (1) × A (2) × A (2) ×

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$.

イロン 不同 とくほど 不同 とう

Э

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$. By minimality

$$\forall \mathbf{x} \exists i; \ x_{[i,i+|w|-1]} = w \Rightarrow \exists j > 0; x_{[-j,i-1]} \in \mathcal{R}(w).$$

<回と < 目と < 目と

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$. By minimality

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

 $|\mathbf{v}| = |i - (-j)|.$

イロト イポト イヨト イヨト

3

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$. By minimality

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

 $|\mathbf{v}| = |i - (-j)|.$

By minimality there are finitely many of such v:

$$\mathcal{R}(w) = \{v_1, v_2, \ldots, v_m\}: m < \infty.$$

(日本) (日本) (日本)

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$. By minimality

$$\forall x \exists i; x_{[i,i+|w|-1]} = w \Rightarrow \exists j > 0; x_{[-j,i-1]} \in \mathcal{R}(w).$$

$$x: \qquad \underbrace{\qquad \quad }_{-j \xrightarrow{w} \qquad 0 \qquad i \qquad w}}_{v \xrightarrow{v} \qquad 0 \qquad i \qquad w}$$

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

 $|\mathbf{v}| = |i - (-j)|.$

By minimality there are finitely many of such v:

$$\mathcal{R}(w) = \{v_1, v_2, \ldots, v_m\}: m < \infty.$$

So for U = [w] and x:

$$n(x) = \min_{1 \le i \le m} |v_i|.$$

(日本)(日本)(日本)

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P} , of (X, T) is a collection of towers of the form:

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P} , of (X, T) is a collection of towers of the form:

In fact,

$$\mathcal{P} = \{T^j(B_i): 1 \le i \le m, 1 \le j \le h_i\}$$

where $\{B_i\}_{i=1}^m$ are disjoint clopen subsets of X and $h_i \in \mathbb{N}$.

A (10) + A (10) + A (10)

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P} , of (X, T) is a collection of towers of the form:

In fact,

$$\mathcal{P} = \{T^j(B_i): 1 \le i \le m, 1 \le j \le h_i\}$$

where $\{B_i\}_{i=1}^m$ are disjoint clopen subsets of X and $h_i \in \mathbb{N}$. $(T^{h_i}B_i) \subseteq \cup_{i=1}^m B_i, \quad X = \cup_{i=1}^m \cup_{i=1}^{h_i} T^j(B_i).$

- $B = \bigcup_{i=1}^{m} B_i$ is called the basis of partition.
- for each 1 ≤ i ≤ m, {B_i, TB_i,..., T^{h_i}B_i} is called a tower. So the partition is a finite union of towers.
- For each 1 ≤ i ≤ m the first return time to B for the points of B_i is h_i
- The map *T* is defined explicitly every where except the top levels of the towers. We just know that the top level will be mapped to *B* but where exactly? we don't know.

Example, using return words.

Consider (X, S) as a minimal two-sided subshift, a word w and $U = [w] \subset X$. By minimality

$$\forall x \exists i; x_{[i,i+|w|-1]} = w \Rightarrow \exists j > 0; x_{[-j,i-1]} \in \mathcal{R}(w).$$

In fact, by minimality the set of return words to w is finite:

$$\mathcal{R}(w) = \{v_1, v_2, \ldots, v_m\}: m < \infty.$$

So for each $v_i \in \mathcal{R}(w)$, i = 1, ..., m we have a tower above that.

伺 とう きょう とう うう

So let $B = \bigcup_{i=1}^{m} [V_i]$, $\mathcal{T}_i = \{S^j([v_i]): v_i \in \mathcal{R}(w), 0 \le j \le |v_i|\}, i = 1, \dots, m$

are the towers and

$$\mathcal{B} = \{\mathcal{T}_i\}_{i=1}^m$$

is a Kakutani-Rokhlin partition for (X, S).

≣⇒

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

 $\sigma: \ \mathbf{0} \mapsto \mathbf{001}, \ \ \mathbf{1} \mapsto \mathbf{01}$

where x is the fixed point of σ :

 $x = 0100101001001010101 \dots$

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

```
\sigma: \ \mathbf{0} \mapsto \mathbf{001}, \ \ \mathbf{1} \mapsto \mathbf{01}
```

where x is the fixed point of σ :

x = 0100101001001010101...

Let U = [w], with w = 01, as a clopen set around the fixed point of the substitution:

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

```
\sigma: \ \mathbf{0} \mapsto \mathbf{001}, \ \ \mathbf{1} \mapsto \mathbf{01}
```

where *x* is the fixed point of σ :

 $x = 01001010010010100101 \dots$

Let U = [w], with w = 01, as a clopen set around the fixed point of the substitution: Then

 $\mathcal{R}(w) = \{01, 010\}$

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

```
\sigma: \ \mathbf{0}\mapsto \mathbf{001}, \ \ \mathbf{1}\mapsto \mathbf{01}
```

where *x* is the fixed point of σ :

 $x = 010010100100100101 \dots$

Let U = [w], with w = 01, as a clopen set around the fixed point of the substitution: Then

 $\mathcal{R}(w) = \{01, 010\}$

Therefore, $\mathcal{B} = \{[0101], S[(0101]), [01001], S([01001]), S^2([01001])\}$ is a K-R partition of (X, S).

Nested K-R partitions.

The K-R Partition \mathcal{B}' with basis \mathcal{B}' is called nested in the K-R partition \mathcal{B} with basis \mathcal{B} if $\mathcal{B}' \subset \mathcal{B}$ and \mathcal{B}' is a refinement of \mathcal{B} , i.e.

 $\forall A \in \mathcal{B}' \ \exists B \in \mathcal{B}; \ A \subset B.$

イロン 不同 とくほと 不良 とう

3

Nested K-R partitions.

The K-R Partition \mathcal{B}' with basis \mathcal{B}' is called **nested** in the K-R partition \mathcal{B} with basis \mathcal{B} if $\mathcal{B}' \subset \mathcal{B}$ and \mathcal{B}' is a **refinement** of \mathcal{B} , i.e.

 $\forall A \in \mathcal{B}' \ \exists B \in \mathcal{B}; \ A \subset B.$

Roughly speaking, we cut and stack the towers of \mathcal{B} to create \mathcal{B}' .

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems

•
$$\bigcap_n B^{(n)} = \{x\}.$$

•
$$\bigcap_n B^{(n)} = \{x\}.$$

• The sequence $\{\mathcal{B}^{(n)}\}_{n\geq 0}$ is nested, i.e. $\mathcal{B}^{(n+1)}$ is nested in $\mathcal{B}^{(n)}$ for every *n*.

• (1) • (2) • (3) • (3) • (3)

•
$$\bigcap_n B^{(n)} = \{x\}.$$

- The sequence $\{\mathcal{B}^{(n)}\}_{n\geq 0}$ is nested, i.e. $\mathcal{B}^{(n+1)}$ is nested in $\mathcal{B}^{(n)}$ for every *n*.
- $\bigcup_n \mathcal{B}^{(n)}$ generates the topology of X.

(日本) (日本) (日本)

Proposition

Let (X, T) be a minimal Cantor system and $x_0 \in X$. There exists a refining sequence of K-R partitions of X that their basis converge to $\{x_0\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let (X, T) be a minimal Cantor system and $x_0 \in X$. There exists a refining sequence of K-R partitions of X that their basis converge to $\{x_0\}$.

Proof. Fix a sequence of increasing finite partitions

$$\mathcal{P}_1 \preceq \mathcal{P}_2 \preceq \cdots \preceq \mathcal{P}_n \preceq \cdots$$

that generates the topology of X.

Proposition

Let (X, T) be a minimal Cantor system and $x_0 \in X$. There exists a refining sequence of K-R partitions of X that their basis converge to $\{x_0\}$.

Proof. Fix a sequence of increasing finite partitions

$$\mathcal{P}_1 \preceq \mathcal{P}_2 \preceq \cdots \preceq \mathcal{P}_n \preceq \cdots$$

that generates the topology of X. Fix a clopen set C that $x_0 \in C$. We know that

$$\forall x \in C : n_C : X \to \mathbb{Z}; n_C(x) = \inf\{n > 0 : T^n x \in C\}.$$

Since (X, T) is minimal, n_C is well-defined and continuous

- 4 同 ト 4 臣 ト 4 臣 ト

Proposition

Let (X, T) be a minimal Cantor system and $x_0 \in X$. There exists a refining sequence of K-R partitions of X that their basis converge to $\{x_0\}$.

Proof. Fix a sequence of increasing finite partitions

$$\mathcal{P}_1 \preceq \mathcal{P}_2 \preceq \cdots \preceq \mathcal{P}_n \preceq \cdots$$

that generates the topology of X. Fix a clopen set C that $x_0 \in C$. We know that

$$\forall x \in C : n_C : X \to \mathbb{Z}; n_C(x) = \inf\{n > 0 : T^n x \in C\}.$$

Since (X, T) is minimal, n_C is well-defined and continuous and in fact,

$$C = \bigcup_{i=1}^m C_i; \quad \forall x \in C_i: \quad n_C(x) = h_i \in \mathbb{N}.$$

< ≣⇒

臣

• every two cells in $\mathcal{B}^{(1)}$ are disjoint. This is just because of definition of n_c and T being a homeomorphism. (exercise)

・ロト ・回ト ・ヨト ・ヨト

$$W = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} C_{ij} = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} T^j C_i$$

is a finite union of clopen sets and therefore is closed.

イロン 不同 とくほど 不同 とう

크

$$W = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} C_{ij} = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} T^j C_i$$

is a finite union of clopen sets and therefore is closed. Moreover, W is T-invariant. Because T maps the top levels to $C = \bigcup_{i=1}^{m} C_i$. So by minimality W = X.

$$W = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} C_{ij} = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} T^j C_i$$

is a finite union of clopen sets and therefore is closed. Moreover, W is T-invariant. Because T maps the top levels to $C = \bigcup_{i=1}^{m} C_i$. So by minimality W = X. Consequently, $\mathcal{B}^{(1)}$ is a K-R partition for (X, T).

(4月) トイヨト イヨト

$$W = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} C_{ij} = \bigcup_{i=1}^{m} \bigcup_{j=1}^{h_i-1} T^j C_i$$

is a finite union of clopen sets and therefore is closed. Moreover, W is T-invariant. Because T maps the top levels to $C = \bigcup_{i=1}^{m} C_i$. So by minimality W = X.

Consequently, $\mathcal{B}^{(1)}$ is a K-R partition for (X, T). Now we show that we can have $\mathcal{B}^{(1)}$ finer than the partition \mathcal{P}_1 .

< ロ > < 同 > < 三 > < 三 >

Suppos that there exists some $U \in \mathcal{P}_1$ so that it has intersection with C_{ij} but C_{ij} is not contained in U. As the number of elements in $\mathcal{B}^{(1)}$ is finite, consider the least diameter δ of intersections of C_{ij} 's with the elements of \mathcal{P}_1 and cut the towers of $\mathcal{B}^{(1)}$ into finitely many thiner towers (with diameter δ) that each cell of these new towers are contained in an element of \mathcal{P}_1 .

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_2 . Without loss in generality suppose that $x_0 \in C_1$.

・ロト ・回ト ・ヨト ・ヨト

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_2 . Without loss in generality suppose that $x_0 \in C_1$. So consider a clopen set $C' \subset C_1$ around the point x_0 and partition it based on the values of the continuous map $n_{C'}$:

$$C' = \bigcup_{i=1}^n C'_i, \ n_C(C'_i) = h'_i.$$

向下 イヨト イヨト

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_2 . Without loss in generality suppose that $x_0 \in C_1$. So consider a clopen set $C' \subset C_1$ around the point x_0 and partition it based on the values of the continuous map $n_{C'}$:

$$C'=\bigcup_{i=1}^n C'_i, \ n_C(C'_i)=h'_i.$$

Let

$$\mathcal{B}^{(2)} := \{ T^j C'_i : 0 \le j \le h'_i - 1, 1 \le i \le n \}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_2 . Without loss in generality suppose that $x_0 \in C_1$. So consider a clopen set $C' \subset C_1$ around the point x_0 and partition it based on the values of the continuous map $n_{C'}$:

$$C'=\bigcup_{i=1}^n C'_i, \ n_C(C'_i)=h'_i.$$

Let

$$\mathcal{B}^{(2)} := \{ T^j C'_i : 0 \le j \le h'_i - 1, 1 \le i \le n \}.$$

By similar arguments as for $\mathcal{B}^{(1)}$, one can deduce that $\mathcal{B}^{(2)}$ is a K-R partition. Now we show that this is finer than $\mathcal{B}^{(1)}$ and could be constructed to be finer than \mathcal{P}_2 as well.

イロット (日本) イヨット (日本)

 About refining P₂ similar arguments as for the relation between B⁽¹⁾ and P₁ will work. we cut the towers as much as needed to have this property.

- About refining P₂ similar arguments as for the relation between B⁽¹⁾ and P₁ will work. we cut the towers as much as needed to have this property.
- About $\mathcal{B}^{(1)}$: Since $C' \subset C_1$, the initial h_1 levels of all the towers in $\mathcal{B}^{(1)}$ are arranged in the same shape as the first tower of $\mathcal{B}^{(1)}$ with base C_1 . And since $T^{h_1}(C') \subset C_i$ for some other $i = 1, \ldots, m$ the next h_i levels of each tower of $\mathcal{B}^{(2)}$ is arranged in the same way as the associated *i*'th tower in $\mathcal{B}^{(1)}$ and in fact, each of these levels is contained in a unique level of the associated *i*'th tower in $\mathcal{B}^{(1)}$.

・ロン ・四 と ・ 声 ・ ・ 声 ・

Ę

By continuing the above procedure inductively by choosing nested sequence of clopen subsets of C_1 around x_0 and constructing towers based on them and so a sequence of refining K-R partitions that each of them refines a new \mathcal{P}_n (increasingly by n), we will have the intersection of all the bases of the towers to be $\{x_0\}$.

(4月) トイヨト イヨト

Let's get back to the primitive substitution:

```
\sigma: 0 \mapsto 001, 1 \mapsto 01
```

and C = [w], w = 0, as a clopen set around the fixed point of the substitution:

 $x = 01001010010010100101 \dots$

Let's get back to the primitive substitution:

```
\sigma: 0 \mapsto 001, 1 \mapsto 01
```

and C = [w], w = 0, as a clopen set around the fixed point of the substitution:

 $x = 01001010010010100101 \dots$

Let's get back to the primitive substitution:

```
\sigma: 0 \mapsto 001, 1 \mapsto 01
```

and C = [w], w = 0, as a clopen set around the fixed point of the substitution:

 $x = 010010100100100101 \dots$

Then

$$\mathcal{R}(w) = \{0,01\}, \ \ [0] = [00] \cup [01] = [001] \cup [01] = [\sigma(0)] \cup [\sigma(1)].$$

So we should have two towers with disjoint bases [001] and [01]. So

$$\mathcal{B}^{(1)} = \{ [\sigma(0)], S([\sigma(0)]), S^{2}([\sigma(0)]), [\sigma(1)], S([\sigma(1)]) \} \\ = \{ T_{1}^{(1)}, T_{2}^{(1)} \}$$

<ロ> <四> <四> <四> <三</td>

Now let $C'_1 = [w'], w' = 001$. Then $\mathcal{R}(w) = \{001, 00101\}, [001] = [00100101] \cup [00101] = [\sigma^2(0)] \cup [\sigma^2(1)]$ So we should have two towers with disjoint bases [001001] and [00101]: $\mathcal{B}^{(2)} = \{[\sigma^2(0)], \dots, S^7([\sigma^2(0)]), [\sigma^2(1)], \dots, S^4([\sigma^2(1)])\}$

$$\mathcal{B}^{(2)} = \{ [\sigma^2(0)], \dots, S^{\prime}([\sigma^2(0)]), [\sigma^2(1)], \dots, S^4([\sigma^2(1)]) \}$$
$$= \{ T_1^{(1)}, T_1^{(1)}, T_2^{(1)}, T_1^{(1)}, T_2^{(1)} \}$$
$$= \{ T_1^{(2)}, T_2^{(2)} \}$$

Now let $C'_1 = [w'], w' = 001$. Then $\mathcal{R}(w) = \{001, 00101\}, [001] = [00100101] \cup [00101] = [\sigma^2(0)] \cup [\sigma^2(1)]$ So we should have two towers with disjoint bases [001001] and [00101]: $\mathcal{B}^{(2)} = \{[\sigma^2(0)], \dots, S^7([\sigma^2(0)]), [\sigma^2(1)], \dots, S^4([\sigma^2(1)])\}$

$$\begin{aligned} \mathcal{B}^{(2)} &= \{ [\sigma^2(0)], \dots, S^7([\sigma^2(0)]), [\sigma^2(1)], \dots, S^4([\sigma^2(1)])] \\ &= \{ T_1^{(1)}, T_1^{(1)}, T_2^{(1)}, T_1^{(1)}, T_2^{(1)} \} \\ &= \{ T_1^{(2)}, T_2^{(2)} \} \end{aligned}$$

If you continue this procedure inductively, you will get

$$\begin{aligned} \mathcal{B}^{(n)} &= \{S^{j}\sigma^{n}([a]): \ a = 0, 1, \ 0 \leq j < |\sigma^{n}(a)|\} \\ &= \{T_{1}^{(n-1)}, T_{1}^{(n-1)}, T_{2}^{(n-1)}, T_{1}^{(n-1)}, T_{2}^{(n-1)}\} \\ &= \{T_{1}^{(n)}, T_{2}^{(n)}\} \end{aligned}$$

イロト イポト イヨト イヨト 二日

Maryam Hosseini Bratteli-Vershik Models of Cantor Minimal Systems

General case.

Proposition

For every aperiodic two sided minimal subshift (X, S) associated to a primitive proper substitution $\sigma : A \to A^*$ that A is a finite alphabet,

$$\mathcal{B}^{(n)} = \{S^j \sigma^n([a]): a \in A, 0 \le j < |\sigma^n(a)|\}, n \ge 0$$

is a refining sequence of K-R partitions.

Remark. Proper means that there are letters $r, \ell \in A$ that for every $a \in A$, $\sigma(a)$ starts with r and ends up with ℓ .

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

General case.

Proposition

For every aperiodic two sided minimal subshift (X, S) associated to a primitive proper substitution $\sigma : A \to A^*$ that A is a finite alphabet,

$$\mathcal{B}^{(n)} = \{S^j \sigma^n([a]): a \in A, 0 \le j < |\sigma^n(a)|\}, n \ge 0$$

is a refining sequence of K-R partitions.

Remark. Proper means that there are letters $r, \ell \in A$ that for every $a \in A$, $\sigma(a)$ starts with r and ends up with ℓ .

To prove this proposition knowing the notion of recognizability will ease it.

< ロ > < 同 > < 三 > < 三 >

For instance:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ →

E.