Bratteli-Vershik Models of Cantor Minimal Systems

Maryam Hosseini
CIMPA School, Bejaia, Algeria

07-18 November 2021

we want to show that:

When (X, T) is given to us, there exists a Bratteli-Vershik system $\left(X_{B}, T_{B}\right)$ that is conjugate to that.

we want to show that:

When (X, T) is given to us, there exists a Bratteli-Vershik system $\left(X_{B}, T_{B}\right)$ that is conjugate to that.

To show this we need Kakutani-Rokhlin partitions that are based on the notion of first return time to a clopen set.

First Return Time map.

Let (X, T) be a minimal Cantor system and $U \stackrel{\text { clopen }}{\subseteq} X$.

First Return Time map.

Let (X, T) be a minimal Cantor system and $U \stackrel{\text { clopen }}{\subseteq} X$. For every $x \in X$ the the first return time map is defined by

$$
n(x)=\inf \left\{n \in \mathbb{N}: T^{n} x \in U\right\}>0
$$

First Return Time map.

Let (X, T) be a minimal Cantor system and $U \stackrel{\text { clopen }}{\subseteq} X$. For every $x \in X$ the the first return time map is defined by

$$
n(x)=\inf \left\{n \in \mathbb{N}: T^{n} x \in U\right\}>0
$$

$n(x)$ exists for every x as the system is minimal.

First Return Time map.

Let (X, T) be a minimal Cantor system and $U \stackrel{\text { clopen }}{\subseteq} X$. For every $x \in X$ the the first return time map is defined by

$$
n(x)=\inf \left\{n \in \mathbb{N}: T^{n} x \in U\right\}>0
$$

$n(x)$ exists for every x as the system is minimal. In fact, the above sets have bounded gaps.

First Return Time map.

Let (X, T) be a minimal Cantor system and $U \stackrel{\text { clopen }}{\subseteq} X$. For every $x \in X$ the the first return time map is defined by

$$
n(x)=\inf \left\{n \in \mathbb{N}: T^{n} x \in U\right\}>0
$$

$n(x)$ exists for every x as the system is minimal. In fact, the above sets have bounded gaps. This was because:

$$
\forall \text { clopen } U \subset X, \exists N ; \quad \cup_{n=0}^{N} T^{-n}(U)=X
$$

Example, return words for subshifts.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$.

Example, return words for subshifts.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$. By minimality

$$
\forall x \exists i ; \quad x_{[i, i+|w|-1]}=w \Rightarrow \exists j>0 ; x_{[-j, i-1]} \in \mathcal{R}(w) .
$$

X:

Example, return words for subshifts.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$. By minimality

$$
\forall x \exists i ; \quad x_{[i, i+|w|-1]}=w \Rightarrow \exists j>0 ; x_{[-j, i-1]} \in \mathcal{R}(w) .
$$

X:

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

$$
|v|=|i-(-j)| .
$$

Example, return words for subshifts.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$. By minimality

$$
\forall x \exists i ; \quad x_{[i, i+|w|-1]}=w \Rightarrow \exists j>0 ; x_{[-j, i-1]} \in \mathcal{R}(w) .
$$

x:

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

$$
|v|=|i-(-j)| .
$$

By minimality there are finitely many of such v :

$$
\mathcal{R}(w)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}: \quad m<\infty .
$$

Example, return words for subshifts.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$. By minimality

$$
\forall x \exists i ; \quad x_{[i, i+|w|-1]}=w \Rightarrow \exists j>0 ; x_{[-j, i-1]} \in \mathcal{R}(w) .
$$

x:

So $S^{i}(x), S^{-j}(x) \in U$ and one of the the return times is:

$$
|v|=|i-(-j)| .
$$

By minimality there are finitely many of such v :

$$
\mathcal{R}(w)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}: \quad m<\infty .
$$

So for $U=[w]$ and x :

$$
n(x)=\min _{1 \leq i \leq m}\left|v_{i}\right| .
$$

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P}, of (X, T) is a collection of towers of the form:

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P}, of (X, T) is a collection of towers of the form:

In fact,

$$
\mathcal{P}=\left\{T^{j}\left(B_{i}\right): 1 \leq i \leq m, 1 \leq j \leq h_{i}\right\}
$$

where $\left\{B_{i}\right\}_{i=1}^{m}$ are disjoint clopen subsets of X and $h_{i} \in \mathbb{N}$.

Kakutani-Rokhlin partitions.

Let (X, T) be a minimal Cantor system where T is a homeomorphism. A Kakutani-Rokhlin partition, say \mathcal{P}, of (X, T) is a collection of towers of the form:

In fact,

$$
\mathcal{P}=\left\{T^{j}\left(B_{i}\right): 1 \leq i \leq m, 1 \leq j \leq h_{i}\right\}
$$

where $\left\{B_{i}\right\}_{i=1}^{m}$ are disjoint clopen subsets of X and $h_{i} \in \mathbb{N}$.

$$
\left(T^{h_{i}} B_{i}\right) \subseteq \cup_{i=1}^{m} B_{i}, \quad X=\cup_{i=1}^{m} \cup_{j=1}^{h_{i}} T^{j}\left(B_{i}\right) .
$$

- $B=\cup_{i=1}^{m} B_{i}$ is called the basis of partition.
- for each $1 \leq i \leq m,\left\{B_{i}, T B_{i}, \ldots, T^{h_{i}} B_{i}\right\}$ is called a tower. So the partition is a finite union of towers.
- For each $1 \leq i \leq m$ the first return time to B for the points of B_{i} is h_{i}
- The map T is defined explicitly every where except the top levels of the towers. We just know that the top level will be mapped to B but where exactly? we don't know.

Example, using return words.

Consider (X, S) as a minimal two-sided subshift, a word w and $U=[w] \subset X$. By minimality

$$
\forall x \exists i ; \quad x_{[i, i+|w|-1]}=w \Rightarrow \exists j>0 ; x_{[-j, i-1]} \in \mathcal{R}(w)
$$

In fact, by minimality the set of return words to w is finite:

$$
\mathcal{R}(w)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}: \quad m<\infty .
$$

So for each $v_{i} \in \mathcal{R}(w), i=1, \ldots, m$ we have a tower above that.

So let $B=\cup_{i=1}^{m}\left[V_{i}\right]$,

$$
\mathcal{T}_{i}=\left\{S^{j}\left(\left[v_{i}\right]\right): v_{i} \in \mathcal{R}(w), 0 \leq j \leq\left|v_{i}\right|\right\}, i=1, \ldots, m
$$

are the towers and

$$
\mathcal{B}=\left\{\mathcal{T}_{i}\right\}_{i=1}^{m}
$$

is a Kakutani-Rokhlin partition for (X, S).

Example.

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

where x is the fixed point of σ :

$$
x=01001010010010100101 \ldots
$$

Example.

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

where x is the fixed point of σ :

$$
x=01001010010010100101 \ldots
$$

Let $U=[w]$, with $w=01$, as a clopen set around the fixed point of the substitution:

Example.

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

where x is the fixed point of σ :

$$
x=01001010010010100101 \ldots
$$

Let $U=[w]$, with $w=01$, as a clopen set around the fixed point of the substitution: Then

$$
\mathcal{R}(w)=\{01,010\}
$$

Example.

Consider the two sided subshift $(\overline{\mathcal{O}(x)}, S)$ generated by the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

where x is the fixed point of σ :

$$
x=01001010010010100101 \ldots
$$

Let $U=[w]$, with $w=01$, as a clopen set around the fixed point of the substitution: Then

$$
\mathcal{R}(w)=\{01,010\}
$$

Therefore, $\mathcal{B}=\left\{[0101], S[(0101]),[01001], S([01001]), S^{2}([01001])\right\}$ is a K-R partition of (X, S).

Nested K-R partitions.

The K-R Partition \mathcal{B}^{\prime} with basis B^{\prime} is called nested in the $\mathrm{K}-\mathrm{R}$ partition \mathcal{B} with basis B if $B^{\prime} \subset B$ and \mathcal{B}^{\prime} is a refinement of \mathcal{B}, i.e.

$$
\forall A \in \mathcal{B}^{\prime} \quad \exists B \in \mathcal{B} ; \quad A \subset B .
$$

Nested K-R partitions.

The K-R Partition \mathcal{B}^{\prime} with basis B^{\prime} is called nested in the $\mathrm{K}-\mathrm{R}$ partition \mathcal{B} with basis B if $B^{\prime} \subset B$ and \mathcal{B}^{\prime} is a refinement of \mathcal{B}, i.e.

$$
\forall A \in \mathcal{B}^{\prime} \quad \exists B \in \mathcal{B} ; \quad A \subset B
$$

Roughly speaking, we cut and stack the towers of \mathcal{B} to create \mathcal{B}^{\prime}.

Refining sequence of K-R partitions.

A sequence of K-R partitions $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ with basis $B^{(n)}$ is called refining if

Refining sequence of K-R partitions.

A sequence of K-R partitions $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ with basis $B^{(n)}$ is called refining if

- $\bigcap_{n} B^{(n)}=\{x\}$.

Refining sequence of $\mathrm{K}-\mathrm{R}$ partitions.

A sequence of K-R partitions $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ with basis $B^{(n)}$ is called refining if

- $\bigcap_{n} B^{(n)}=\{x\}$.
- The sequence $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ is nested, i.e. $\mathcal{B}^{(n+1)}$ is nested in $\mathcal{B}^{(n)}$ for every n.

Refining sequence of K-R partitions.

A sequence of K-R partitions $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ with basis $B^{(n)}$ is called refining if

- $\bigcap_{n} B^{(n)}=\{x\}$.
- The sequence $\left\{\mathcal{B}^{(n)}\right\}_{n \geq 0}$ is nested, i.e. $\mathcal{B}^{(n+1)}$ is nested in $\mathcal{B}^{(n)}$ for every n.
- $\bigcup_{n} \mathcal{B}^{(n)}$ generates the topology of X.

K-R partitions of minimal Cantor systems.

Proposition

Let (X, T) be a minimal Cantor system and $x_{0} \in X$. There exists a refining sequence of $K-R$ partitions of X that their basis converge to $\left\{x_{0}\right\}$.

K-R partitions of minimal Cantor systems.

Proposition

Let (X, T) be a minimal Cantor system and $x_{0} \in X$. There exists a refining sequence of $K-R$ partitions of X that their basis converge to $\left\{x_{0}\right\}$.

Proof. Fix a sequence of increasing finite partitions

$$
\mathcal{P}_{1} \preceq \mathcal{P}_{2} \preceq \cdots \preceq \mathcal{P}_{n} \preceq \cdots
$$

that generates the topology of X.

K-R partitions of minimal Cantor systems.

Proposition

Let (X, T) be a minimal Cantor system and $x_{0} \in X$. There exists a refining sequence of $K-R$ partitions of X that their basis converge to $\left\{x_{0}\right\}$.

Proof. Fix a sequence of increasing finite partitions

$$
\mathcal{P}_{1} \preceq \mathcal{P}_{2} \preceq \cdots \preceq \mathcal{P}_{n} \preceq \cdots
$$

that generates the topology of X. Fix a clopen set C that $x_{0} \in C$. We know that

$$
\forall x \in C: n_{C}: X \rightarrow \mathbb{Z} ; n_{C}(x)=\inf \left\{n>0: T^{n} x \in C\right\}
$$

Since (X, T) is minimal, n_{C} is well-defined and continuous

K-R partitions of minimal Cantor systems.

Proposition

Let (X, T) be a minimal Cantor system and $x_{0} \in X$. There exists a refining sequence of $K-R$ partitions of X that their basis converge to $\left\{x_{0}\right\}$.

Proof. Fix a sequence of increasing finite partitions

$$
\mathcal{P}_{1} \preceq \mathcal{P}_{2} \preceq \cdots \preceq \mathcal{P}_{n} \preceq \cdots
$$

that generates the topology of X. Fix a clopen set C that $x_{0} \in C$. We know that

$$
\forall x \in C: n_{C}: X \rightarrow \mathbb{Z} ; n_{C}(x)=\inf \left\{n>0: T^{n} x \in C\right\}
$$

Since (X, T) is minimal, n_{C} is well-defined and continuous and in fact,

$$
C=\cup_{i=1}^{m} C_{i} ; \quad \forall x \in C_{i}: \quad n_{C}(x)=h_{i} \in \mathbb{N}
$$

Let's define a partition by the above subsets $C_{i}, i=1, \ldots, m$.

$$
\mathcal{B}^{(1)}:=\left\{T^{j} C_{i}: \quad 0 \leq j \leq h_{i}-1,1 \leq i \leq m\right\}
$$

- every two cells in $\mathcal{B}^{(1)}$ are disjoint. This is just because of definition of n_{C} and T being a homeomorphism. (exercise)
- $\mathcal{B}^{(1)}$ covers X. Because

$$
W=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} C_{i j}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} T^{j} C_{i}
$$

is a finite union of clopen sets and therefore is closed.

- $\mathcal{B}^{(1)}$ covers X. Because

$$
W=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} C_{i j}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} T^{j} C_{i}
$$

is a finite union of clopen sets and therefore is closed. Moreover, W is T-invariant. Because T maps the top levels to $C=\cup_{i=1}^{m} C_{i}$. So by minimality $W=X$.

- $\mathcal{B}^{(1)}$ covers X. Because

$$
W=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} C_{i j}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} T^{j} C_{i}
$$

is a finite union of clopen sets and therefore is closed.
Moreover, W is T-invariant. Because T maps the top levels to $C=\cup_{i=1}^{m} C_{i}$. So by minimality $W=X$.
Consequently, $\mathcal{B}^{(1)}$ is a $\mathrm{K}-\mathrm{R}$ partition for (X, T).

- $\mathcal{B}^{(1)}$ covers X. Because

$$
W=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} C_{i j}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{h_{i}-1} T^{j} C_{i}
$$

is a finite union of clopen sets and therefore is closed.
Moreover, W is T-invariant. Because T maps the top levels to $C=\cup_{i=1}^{m} C_{i}$. So by minimality $W=X$.
Consequently, $\mathcal{B}^{(1)}$ is a $\mathrm{K}-\mathrm{R}$ partition for (X, T). Now we show that we can have $\mathcal{B}^{(1)}$ finer than the partition \mathcal{P}_{1}.

Suppos that there exists some $U \in \mathcal{P}_{1}$ so that it has intersection with $C_{i j} j$ but $C_{i j}$ is not contained in U. As the number of elements in $\mathcal{B}^{(1)}$ is finite, consider the least diameter δ of intersections of $C_{i j}$'s with the elements of \mathcal{P}_{1} and cut the towers of $\mathcal{B}^{(1)}$ into finitely many thiner towers (with diameter δ) that each cell of these new towers are contained in an element of \mathcal{P}_{1}.

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_{2}. Without loss in generality suppose that $x_{0} \in C_{1}$.

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_{2}. Without loss in generality suppose that $x_{0} \in C_{1}$. So consider a clopen set $C^{\prime} \subset C_{1}$ around the point x_{0} and partition it based on the values of the continuous map $n_{C^{\prime}}$:

$$
C^{\prime}=\bigcup_{i=1}^{n} C_{i}^{\prime}, n_{C}\left(C_{i}^{\prime}\right)=h_{i}^{\prime}
$$

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_{2}. Without loss in generality suppose that $x_{0} \in C_{1}$. So consider a clopen set $C^{\prime} \subset C_{1}$ around the point x_{0} and partition it based on the values of the continuous map $n_{C^{\prime}}$:

$$
C^{\prime}=\bigcup_{i=1}^{n} C_{i}^{\prime}, n_{C}\left(C_{i}^{\prime}\right)=h_{i}^{\prime}
$$

Let

$$
\mathcal{B}^{(2)}:=\left\{T^{j} C_{i}^{\prime}: \quad 0 \leq j \leq h_{i}^{\prime}-1,1 \leq i \leq n\right\} .
$$

Now to define a K-R partition $\mathcal{B}^{(2)}$ that refines $\mathcal{B}^{(1)}$ and \mathcal{P}_{2}. Without loss in generality suppose that $x_{0} \in C_{1}$. So consider a clopen set $C^{\prime} \subset C_{1}$ around the point x_{0} and partition it based on the values of the continuous map $n_{C^{\prime}}$:

$$
C^{\prime}=\bigcup_{i=1}^{n} C_{i}^{\prime}, n_{C}\left(C_{i}^{\prime}\right)=h_{i}^{\prime}
$$

Let

$$
\mathcal{B}^{(2)}:=\left\{T^{j} C_{i}^{\prime}: \quad 0 \leq j \leq h_{i}^{\prime}-1,1 \leq i \leq n\right\} .
$$

By similar arguments as for $\mathcal{B}^{(1)}$, one can deduce that $\mathcal{B}^{(2)}$ is a K-R partition. Now we show that this is finer than $\mathcal{B}^{(1)}$ and could be constructed to be finer than \mathcal{P}_{2} as well.

- About refining \mathcal{P}_{2} similar arguments as for the relation between $\mathcal{B}^{(1)}$ and \mathcal{P}_{1} will work. we cut the towers as much as needed to have this property.
- About refining \mathcal{P}_{2} similar arguments as for the relation between $\mathcal{B}^{(1)}$ and \mathcal{P}_{1} will work. we cut the towers as much as needed to have this property.
- About $\mathcal{B}^{(1)}$: Since $C^{\prime} \subset C_{1}$, the initial h_{1} levels of all the towers in $\mathcal{B}^{(1)}$ are arranged in the same shape as the first tower of $\mathcal{B}^{(1)}$ with base C_{1}. And since $T^{h_{1}}\left(C^{\prime}\right) \subset C_{i}$ for some other $i=1, \ldots, m$ the next h_{i} levels of each tower of $\mathcal{B}^{(2)}$ is arranged in the same way as the associated i^{\prime} 'th tower in $\mathcal{B}^{(1)}$ and in fact, each of these levels is contained in a unique level of the associated i^{\prime} th tower in $\mathcal{B}^{(1)}$.

By continuing the above procedure inductively by choosing nested sequence of clopen subsets of C_{1} around x_{0} and constructing towers based on them and so a sequence of refining K-R partitions that each of them refines a new \mathcal{P}_{n} (increasingly by n), we will have the intersection of all the bases of the towers to be $\left\{x_{0}\right\}$.

Example.

Let's get back to the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

and $C=[w], w=0$, as a clopen set around the fixed point of the substitution:

$$
x=01001010010010100101 \ldots
$$

Example.

Let's get back to the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

and $C=[w], w=0$, as a clopen set around the fixed point of the substitution:

$$
x=01001010010010100101 \ldots
$$

Example.

Let's get back to the primitive substitution:

$$
\sigma: 0 \mapsto 001, \quad 1 \mapsto 01
$$

and $C=[w], w=0$, as a clopen set around the fixed point of the substitution:

$$
x=01001010010010100101 \ldots
$$

Then

$$
\mathcal{R}(w)=\{0,01\}, \quad[0]=[00] \cup[01]=[001] \cup[01]=[\sigma(0)] \cup[\sigma(1)] .
$$

So we should have two towers with disjoint bases [001] and [01]. So

$$
\begin{gathered}
\mathcal{B}^{(1)}=\left\{[\sigma(0)], S([\sigma(0)]), S^{2}([\sigma(0)]),[\sigma(1)], S([\sigma(1)])\right\} \\
=\left\{T_{1}^{(1)}, T_{2}^{(1)}\right\}
\end{gathered}
$$

Now let $C_{1}^{\prime}=\left[w^{\prime}\right], w^{\prime}=001$. Then

$$
\mathcal{R}(w)=\{001,00101\},[001]=[00100101] \cup[00101]=\left[\sigma^{2}(0)\right] \cup\left[\sigma^{2}(1)\right]
$$

So we should have two towers with disjoint bases [001001] and [00101]:

$$
\begin{gathered}
\mathcal{B}^{(2)}=\left\{\left[\sigma^{2}(0)\right], \ldots, S^{7}\left(\left[\sigma^{2}(0)\right]\right),\left[\sigma^{2}(1)\right], \ldots, S^{4}\left(\left[\sigma^{2}(1)\right]\right)\right\} \\
=\left\{T_{1}^{(1)}, T_{1}^{(1)}, T_{2}^{(1)}, T_{1}^{(1)}, T_{2}^{(1)}\right\} \\
=\left\{T_{1}^{(2)}, T_{2}^{(2)}\right\}
\end{gathered}
$$

Now let $C_{1}^{\prime}=\left[w^{\prime}\right], w^{\prime}=001$. Then

$$
\mathcal{R}(w)=\{001,00101\},[001]=[00100101] \cup[00101]=\left[\sigma^{2}(0)\right] \cup\left[\sigma^{2}(1)\right]
$$

So we should have two towers with disjoint bases [001001] and [00101]:

$$
\begin{gathered}
\mathcal{B}^{(2)}=\left\{\left[\sigma^{2}(0)\right], \ldots, S^{7}\left(\left[\sigma^{2}(0)\right]\right),\left[\sigma^{2}(1)\right], \ldots, S^{4}\left(\left[\sigma^{2}(1)\right]\right)\right\} \\
=\left\{T_{1}^{(1)}, T_{1}^{(1)}, T_{2}^{(1)}, T_{1}^{(1)}, T_{2}^{(1)}\right\} \\
=\left\{T_{1}^{(2)}, T_{2}^{(2)}\right\}
\end{gathered}
$$

If you continue this procedure inductively, you will get

$$
\begin{aligned}
& \mathcal{B}^{(n)}=\left\{S^{j} \sigma^{n}([a]): a=0,1, \quad 0 \leq j<\left|\sigma^{n}(a)\right|\right\} \\
&=\left\{T_{1}^{(n-1)}, T_{1}^{(n-1)}, T_{2}^{(n-1)}, T_{1}^{(n-1)}, T_{2}^{(n-1)}\right\} \\
&=\left\{T_{1}^{(n)}, T_{2}^{(n)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& S^{2}([6(0)]) \\
& S([6(0))] \\
& {[6(0)]} \\
& 16^{2}(0) \mid-1 \\
& S\left(\left[6^{2}(0)\right)\right) \\
& \square
\end{aligned}
$$

General case.

Proposition

For every aperiodic two sided minimal subshift (X, S) associated to a primitive proper substitution $\sigma: A \rightarrow A^{*}$ that A is a finite alphabet,

$$
\mathcal{B}^{(n)}=\left\{S^{j} \sigma^{n}([a]): \quad a \in A, 0 \leq j<\left|\sigma^{n}(a)\right|\right\}, n \geq 0
$$

is a refining sequence of $K-R$ partitions.
Remark. Proper means that there are letters $r, \ell \in A$ that for every $a \in A, \sigma(a)$ starts with r and ends up with ℓ.

General case.

Proposition

For every aperiodic two sided minimal subshift (X, S) associated to a primitive proper substitution $\sigma: A \rightarrow A^{*}$ that A is a finite alphabet,

$$
\mathcal{B}^{(n)}=\left\{S^{j} \sigma^{n}([a]): \quad a \in A, 0 \leq j<\left|\sigma^{n}(a)\right|\right\}, n \geq 0
$$

is a refining sequence of $K-R$ partitions.
Remark. Proper means that there are letters $r, \ell \in A$ that for every $a \in A, \sigma(a)$ starts with r and ends up with ℓ.

To prove this proposition knowing the notion of recognizability will ease it.

For instance:

$$
\begin{aligned}
&\text { 6: } \left.\left\{a, b, c^{\prime}\right\} \longrightarrow\{a, b,\}^{*}\right\}^{\prime \prime} B^{\prime \prime}: \frac{}{a}-\frac{}{c} \\
& G(a)=a b c \\
& 6(b)=a b b c
\end{aligned}
$$

$$
b(c)=a b c c c
$$

$$
B^{12)}: T_{11}\left\{T_{2}=T_{3}=\frac{}{6(a)}=\right.
$$

