Bratteli-Vershik Models of Cantor Minimal Systems

Exercises

CIMPA School, Bejaia, Algeria

07-18 November 2021

Exercises Bratteli-Vershik Models of Cantor Minimal Systems

・ 同 ト ・ ヨ ト ・ ヨ ト

(1) For the Bratteli diagram (B, V) prove that X_B (the set of all infinite paths) with the topology generated by cylinders (finite paths) is a second countable, totally disconnected, compact and Hausdorff space.

(2) Prove that the Vershik system on a simple ordered Bratteli diagram is homeomorphism and (X_B, T_B) is minimal.

(3) A dynamical system is called *essentially minimal* if it has a *unique minimal subsystem*. Try to construct a Bratteli diagram (B, V) with an ordering on it such that (X_B, T_B) is essentially minimal.

イロト イヨト イヨト イヨト

(4) Show that every Bratteli diagram has an equivalent diagram in which between v_0 and any vertex at level V_1 there is a single edge.

(5) Consider the minimal system (X, T) on the Cantor set and a clopen subset $U \subset X$. For every $x \in X$ let

 $n(x) = \inf\{n \in \mathbb{N} : T^n x \in U\} > 0.$

Prove that for U, n(x) has a uniform bound on X.

(6) Suppose that (X_B, T_B) is a Vershik system on the simple ordered Bratteli diagram (B, V, \leq) . If U is a clopen subset of X_B , how one can show the induced system $(U, (T_B)_U)$ on (B, V, \leq) .

イロト 不得 トイヨト イヨト

(7) Prove that different levels of one or two towers of a Kakutani-Rokhlin partition are disjoint.

(8) If (X, T) is expansive then

 $\exists k_0$ such that $\forall k > k_0$: (X, T) is conjugate to (Y_k, S) where (Y_k, S) , $k \in \mathbb{N}$ are the factors of (X, T) coming up from the truncation maps on the Bratteli-Vershik model of (X, T).

(9) Suppose that the minimal Cantor system (X, T) has the Bratteli-Vershik model (B, V, \leq) and let (B', V', \leq') be another simple ordered Bratteli diagram that V = V', E = E' and the orderings on $r^{-1}(v)$ for all $v \in V_n = V'_n$, $n \in \mathbb{N}$ are the same except at one level k_0 . We have seen that the Vershik system on (B', V', \leq') is orbit equivalent to the one on (B, V, \leq) . show that the two cocycle maps are bounded. (hint. one may use K-R towers.)